School of Doctoral Studies in Environmental Engineering

Manifesto of studies
A. Y. 2006-2007

Teaching activity A.Y. 2006-2007

Institutional courses at DICA

A) Curriculum in Environmental Engineering
B) Curriculum in Urban-Territorial Engineering and Architecture
C) Both curricula

<table>
<thead>
<tr>
<th>Period</th>
<th>Course</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>First term: January-March 2007</td>
<td>A) Mathematical methods for engineering</td>
<td>A. Valli</td>
</tr>
<tr>
<td>January</td>
<td>A) Numerical methods for free-surface hydrodynamics</td>
<td>V. Casulli</td>
</tr>
<tr>
<td>January-June</td>
<td>A) Numerical methods for hyperbolic equations and applications</td>
<td>E. Toro</td>
</tr>
<tr>
<td>February</td>
<td>B) Energy performance of buildings</td>
<td>P. Baggio</td>
</tr>
<tr>
<td>February-March</td>
<td>C) Frameworks and tools for environmental assessment and land-use decisions</td>
<td>Prof. Sorani (visiting)</td>
</tr>
<tr>
<td>March</td>
<td>A) Principles of ecology and environmental chemistry</td>
<td>M. Ragazzi</td>
</tr>
</tbody>
</table>

Second term: May-July 2007

<table>
<thead>
<tr>
<th>Period</th>
<th>Course</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>April/May</td>
<td>B) Architecture and Landscape</td>
<td>C. Lamanna</td>
</tr>
<tr>
<td>May</td>
<td>B) Sustainable housing</td>
<td>A. Frattari</td>
</tr>
<tr>
<td>May</td>
<td>C) Environmental data management and analysis</td>
<td>E. Blanzieri</td>
</tr>
<tr>
<td>May-June</td>
<td>A) Geostatistics</td>
<td>A. Bellin</td>
</tr>
<tr>
<td>June</td>
<td>C) City and region vis-à-vis the sustainability paradigm</td>
<td>C. Diamantini</td>
</tr>
<tr>
<td>June-July</td>
<td>A) Experimental techniques</td>
<td>P. Baggio</td>
</tr>
<tr>
<td>July</td>
<td>A) Fluid mechanics</td>
<td>M. Tubino</td>
</tr>
</tbody>
</table>

Credits

<table>
<thead>
<tr>
<th></th>
<th>Standard exam / Tutorials</th>
<th>5 credits</th>
<th>7 courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualified exam</td>
<td>9 credits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amount of educational credits to be achieved

<table>
<thead>
<tr>
<th></th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctoral courses</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
</tr>
</tbody>
</table>

Upon approval of the Doctoral School Board and with the approval of his/her supervisor, a student can take courses (not exceeding the n. of 3) at other Italian or foreign Universities within a doctoral programme and attend workshops, summer schools, seminars and stages, obtaining other credits (for a maximum of 7). For further details see the Doctoral School Regulations.

All details and changes regarding the timetable and rooms will be published on the website at the following page: http://www.ing.unitn.it/dica/eng/phd_programme/courses.php
Programmes of the courses

First term (Jan. – March 2007)

Mathematical Methods for Engineering
prof. A. Valli (h. 35 + 6)

Programme

1. Partial differential equations
   1.1. Ordinary differential equations: general results.
   1.2. First order linear partial differential equations with constant coefficients: characteristic lines.
   1.3. Wave equation for one space variable.
   1.4. Second order linear partial differential equations in two variables.
   1.5. Boundary-value problems for second order partial differential equations.

2. Separation of variables
   2.1. Heat equation in one space variable.
   2.2. Wave equations in one space variable.
   2.3. Complete orthonormal basis and related Fourier expansion.
   2.4. Sturm-Liouville problems for second order linear symmetric elliptic operators.

3. Fundamental solutions and Green functions
   3.1. Concentrated unit impulse.
   3.2. Fundamental solution of a linear operator L.
   3.3. Fundamental solution of the Laplace operator in two and three variables.
   3.4. Green function in a bounded domain.

4. Integral equations and the boundary element method
   4.1. Singular integrals.
   4.2. Green formulae.
   4.3. Integral equation for the Dirichlet boundary datum.

5. Weak formulation and the finite element method
   5.1. Weak formulation of second order linear elliptic boundary value problems.
   5.2. Minimization problems in the calculus of variations.
   5.3. Lax-Milgram lemma and its consequences.
   5.4. Galerkin approximation method.
   5.5. The finite element method.

Tutorials
A minimum number of 6 hrs is foreseen for tutorials and exercises.

Evaluation
The standard test consists in a colloquium on one topic chosen by the student among the subjects of the course; the qualified test consists in a colloquium on three topics chosen by the student among the subjects of the course.

References
C.C. Mei, *Mathematical Analysis in Engineering*, Cambridge University Press, 1995 (Selected subjects from Chapters 2-4, 6 and 8).
Numerical Methods for Free-Surface Hydrodynamics  
prof. V. Casulli (h. 20)

Programme

1. Mathematical Models  
   1.1 The Navier-Stokes Equations.  
   1.2 A Three-Dimensional Hydrostatic Model.  
   1.3 The Vertically Averaged Model (2Dxy).  
   1.4 The Laterally Averaged Model (2Dxz).  
   1.5 The Open Channel Equations (1D).

2. Eulerian-Lagrangian Methods  
   2.1 Convection-Diffusion Equations.  
   2.2 Explicit Upwind Method.  
   2.3 Implicit Upwind Method.  
   2.4 Eulerian-Lagrangian Methods.  
   2.5 Semi-Implicit Methods.  
   2.6 The Conjugate Gradient Method.

3. Numerical Methods for the 1D Model  
   3.1 Characteristic Analysis.  
   3.2 Semi-Implicit Finite Difference Methods.  
   3.3 An Equation for the Free Surface.  
   3.4 Fully Implicit Splitting Methods.  
   3.5 Stability Analysis.

4. Numerical Methods for the 2Dxz Model  
   4.1 Semi-Implicit Finite Difference Methods.  
   4.2 Derivation of the Free Surface Equation.  
   4.3 A Particular Case: The 1D Model.  
   4.4 Fully Implicit Splitting Methods.  
   4.5 Stability Analysis.

5. Numerical Methods for the 2Dxy Model  
   5.1 Characteristic Analysis.  
   5.2 Alternating Direction Semi-Implicit.  
   5.3 Semi-Implicit Finite Difference Methods.  
   5.4 An Equation for the Free Surface.  
   5.5 Fully Implicit Splitting Methods.  
   5.6 Stability Analysis.

6. Numerical Methods for the 3D Model  
   6.1 Extensions of the 2D Methods.  
   6.2 Alternating Direction Semi-Implicit.  
   6.3 Semi-Implicit Finite Difference Methods.  
   6.4 An Equation for the Free Surface.  
   6.5 Fully-Implicit Splitting Methods.  
   6.6 Stability Analysis.

Tutorials  
A number of 15 hrs is foreseen for tutorials and exercises.

Evaluation  
The standard test consists in a presentation on a topic chosen by the student among the subjects of the course; the qualified test consists in a project on numerical modelling.

References  
Lecture notes from the instructor.

Numerical Methods for Hyperbolic Equations and Applications  
prof. E.F. Toro (h. 30 + 10)

Programme

Week 1  
Lecture 1: Scalar hyperbolic equations and systems of hyperbolic equations  
Lecture 2: Numerical methods PDEs  
Lecture 3: The shallow water equations (mathematical properties and the Riemann problem) and finite volume methods for hyperbolic PDEs  
Lecture 4: Approximate Riemann solvers  
Lecture 5: High-order methods for model equations and relative TVD schemes

Week 2  
Lecture 1: TVD schemes for the shallow water equations and schemes for source terms  
Lecture 2: Schemes for multiple space dimensions  
Lecture 3: Schemes for diffusion terms and the generalised Riemann problem  
Lecture 4: Polynomial reconstruction and ADER methods  
Lecture 5: ENO/WENO methods, discontinuous Galerkin FE methods
Tutorials
10 hours of tutorials in the computing laboratory are part of the course. These are designed to provide hands-on experience by using some sample computer programs.

Evaluation
Open-book examination to be handed one week after the end of the course, followed by an oral discussion on the questions. For the standard test students must answer 3 questions and for the qualified test students must answer 5 questions.

References

---

**Energy Performance of Buildings**
prof. P. Baggio (with the co-operation of prof. P. Romagnoni – IUAV Venice)

**Programme**
1. Overview of the building role in the global energy consumption perspective. The directive 2002/91/EC of the European parliament and of the council of 16 December 2002 on the energy performance of buildings
2. Introduction to the energy balance at the building level: transmission and ventilation losses, solar heat gains, storage of heat in, or release of stored heat from, the mass of the building, primary energy need for the heating (and/or cooling) system.
3. Introduction to the new European standards for the evaluation of the thermal performance of buildings: UNI EN 832, UNI EN ISO 13790, prEN ISO 13790; outline of the calculation procedures and rules for the energy balance of building and systems. Different types of calculation methods (seasonal vs. monthly vs hourly)
5. Thermal performance of buildings in the summer season: introduction to the analysis and the calculation of the cooling load. Design guidelines: thermal capacity vs. thermal insulation
6. How to communicate the energy value of a building to the laymen, how to ensure regular maintenance and regular inspection of boilers and of air-conditioning systems: the ENERGY CERTIFICATION of buildings as an approach to ensure lasting energy performance.
7. Some examples of existing energy certification rating systems (Trento, Bolzano, Vicenza). Interaction of the energy certification with the building codes. Minimum and quality requirements of the energy certificate as an instrument to steer the building practices.

---

**Frameworks and tools for environmental assessment and land-use**
prof. Sorani (Univ. de Morales – Mexico) (h. 36)

**Programme**
Environmental Impact Assessment.
1. Multicriteria analysis.
2. Decision support systems (DSS) for environmental assessment.
3. Case studies on DSS and GIS.
4. Sensitivity analysis for spatial decision-making in environmental assessment.
5. Furthermore, seminars and daily meetings will be organized to deepen specific topics.
N.B. It is useful to carry a calculation machine.

Programme

1. Nutrient cycles, transport (phenomena) kinetics, other basics.
2. Lake pollution: theory of eutrophication.
3. Lake pollution: external and internal interventions.
4. Basics of air pollution and health risk.
5. Air pollution and prevention.

Tutorials
Tutorials and exercises are integrated in the lectures.

Evaluation
The standard test consists in a written short report on one topic chosen by the student among the subjects proposed by the professor; the qualified test consists in an oral discussion on a case study proposed by the professor.

References

Second term (May – July 2007)

Architecture and Landscape
prof. C. Lamanna

Programme
Lessons within external invited professors.
1. architectural design as land signs reading and interpretation;
2. the European Landscape convention and the modern landscaping concept; from norm to ethic-aesthetic concept;
3. architecture as land transformation and landscape forming tool;
4. land art and land arch(itecture) intersections;
5. nature morphology ad source for recent architectural tendencies.

Tutorials
Tutorials and exercises are integrated in the lectures.

Evaluation
The standard test consists in a short written test about the subjects of the course, including theoretical questions and bibliography.
The qualified test consists in a written report developing a specific research on one topic chosen by the student among the subjects proposed in accord to the teacher and oral discussion on the questions.

Sustainable Housing
prof. A. Frattari

Programme
1. The environmental sustainability and the sustainability in the architecture: principles, definition of the eco-sustainable architecture, natural materials and technologies
2. Thermal and acoustic comfort of the interior; rational use of the natural resources as wind, water, sun, etc.
3. Learning visits of building sites and of specialized exhibitions
4. The use of the wood and the timber in the building constructions: the use in the past, at present time, development of the research in this field
5. Natural Building techniques and management of the natural buildings.

**Tutorials**
Tutorials and exercises are integrated in the lectures.

**Evaluation**
The standard test consists in a colloquium on one topic chosen by the student among the subjects of the course; the qualified test consists in the development of a specific research on one the topics of the course and its defence.

---

### Environmental data management and analysis
prof. E. Blanzieri (h. 40)

**Programme**

3. Predictive models for classification, Decision trees, Bayes models, Support Vector Machines.
4. Laboratory using Weka.
6. Laboratory using Weka.
7. Free and Open Source Software for geographic data management.
8. GRASS GIS: features, logical structure and usage.
9. Spatial databases, geoprocessing, network analysis and WebGIS.
10. Scripting and programming, theory and examples.

[1-6]: Blanzieri (10 hours);
[7-10]: Ciolli, Zatelli (20 hours), with introduction to some topics given by Blanzieri (10 hours).

**Tutorials**
Tutorials and exercises are integrated in the lectures.

**Evaluation**
The standard test consists in writing a review of a journal article; the qualified test consists in writing additional reviews or developing a specific project.

---

### Geostatistics
prof. A. Bellin

**Programme**

1. **Random functions**
   1.1. Elements of probability theory.
   1.2. Definition of random function.
   1.3. The generating function.
   1.4. Correlation.
   1.5. Stationarity.

2. **Geostatistical analysis of spatial data**

2.1. Introductory data analysis
2.2. Spatial structure of data (regional variables)
2.3. Structural analysis (the intrinsic model)
2.4. Covariance functions
2.5. Semivariograms
2.6. Experimental semivariogram
   2.6.1. Inference of the spatial model
   2.6.2. Exercises
3. Geostatistical interpolation
   3.1. Simple kriging
   3.2. Ordinary kriging
   3.3. Cokriging
   3.4. Combined use of soft and hard data
       3.4.1. Indicator kriging
   3.5. Estimation of the interpolation error
   3.6. Non-linear geostatistical interpolation
       3.6.1. Kriging with variable mean
   3.6.2. Generalized kriging.

4. Stochastic models: applications
   4.1. Interpolation versus stochastic modeling
       (random field generators)
   4.2. Generation of unconditional random fields
   4.3. Generation of random field conditioned to the measurements
   4.4. Exercises

Tutorials
A minimum number of 6 hrs is foreseen for tutorials and exercises.

Evaluation
The standard test consists of a series of exercises of medium difficulty which are also the base for the qualified test; the qualified test consists in an additional series of exercises with higher level of difficulty with respect to the standard one.

City and region vis-à-vis the sustainability paradigm
prof. C. Diamantini

Programme
C. Diamantini, B. Zanon, D. Geneletti
1. Sustainable development: principles, criteria, implementation.
2. Sustainability evaluation: indicators aggregation models.
3. The European Territory: development and spatial re-organisation processes; the European Union: Institutions and competencies.
4. The European Union: Environmental and spatial policies; Social and economic cohesion; the European Spatial Development Perspective.
5. Urban sustainability.
6. Regional parks protected areas.

Tutorials
A minimum number of 6 hrs is foreseen for tutorials and exercises.

Evaluation
The standard test consists in a colloquium on one topic chosen by the student among the subjects of the course; the qualified test consists in a colloquium on all the subjects of the course.

Experimental Techniques
prof. P. Baggio

Programme
Basics of metrology, measurement methods and thermometry
(prof. P. Baggio - eng. M. De Franceschi and eng. M. Grigiante)
2. Outline of measurement methods (data detection/acquisition/gathering, response of sensors, calibration, etc.).
4. Survey of the main temperature sensors and their features.
5. Laboratory exercise on the calibration of some temperature sensors.

Detection, representation and computerized management of land data
(prof. G.B. Benciolini)
8. Basics of photogrammetric detection, with a simple example project.
9. Basics of GPS detection, with a simple example project.
11. GPS instruments exercise.
13. Data processing (basic controls) in GRASS system.
14. Laboratory exercise on GRASS system.

Laser Doppler Anemometry
(eng. M. Righetti)
16. Laboratory exercise.

Exercise (measurements) at the Hydraulics Laboratory
(eng. P. Scotton)
17. Measurement of pressure, rate of flow, velocity and load cells.

Tutorials
Tutorials and exercises are integrated in the lectures.

Evaluation
The standard test consists in a practical application of one topic chosen by the student among the subjects of the course; the qualified test consists in a written short report on one topic chosen by the student among the subjects proposed by the teachers.

Fluid Mechanics
prof. M. Tubino (40 h.)

Programme

1. Fundamentals of fluid mechanics
1.1 Properties of fluids; continuum hypothesis: phenomenological aspects and method of evaluation of averaged values.
1.2 Material derivative. Theorem of transport.
1.3 Equation of continuity.
1.4 Mass and surface forces. Cauchy’s axiom. Stress tensor and its properties.
1.5 Kinematic and dynamic boundary conditions.
1.6 Constitutive relationships. Viscous fluids.
1.7 Equations of motion.
1.8 Thermodynamics. Theorem of mechanical power. Equation of energy.
1.9 Vorticity dynamics. Vorticity and circulation.
1.10 Inviscid and irrotational flows.

2. Perturbation methods
2.1 Introduction to perturbation methods: regular perturbations, singular perturbations.
2.2 Matched asymptotic expansions. Multiple scales technique.

2.3 Viscous flow at low Reynolds numbers. Flow due to a moving body: a rigid sphere (Stokes solution), a rigid circular cylinder. Paradoxes of Stokes and Whitehead.
2.4 Oseen approximation; solution through the method of matched asymptotic expansion.

3. Free turbulence
3.1 Length scales and velocity scales.
3.2 Turbulent jets.
3.3 Wakes.
3.4 Mixing layers.

4. Rheology of liquid-granular flows

5. Stratified flows
5.1 Introduction to non-homogeneous fluids.
5.2 Thermal convection: linear stability analysis.
5.3 Double diffusion convection.

Tutorials
A number of 8 hours is foreseen for tutorials and exercises.
Evaluation
The standard test consists in a written test about the subjects of the course, including theoretical questions
and applications;
the qualified test consists in a colloquium on the subjects of the course.

References
Seminara, G., *Dispense: I. Introduzione ai Fondamenti della Meccanica dei Fluidi; II. Meccanica dei Fluidi
Incomprimibili*, University of Genova, a.a. 1993/94.

**English course for Engineers**

This English course, specifically organized for the doctoral students in scientific subjects, is compulsory.

**Complementary educational courses**

Complementary educational courses are foreseen in co-operation with the other Doctoral Schools of the
Faculty of Engineering of the University of Trento and other Italian and foreign universities.
The programme of these courses will be published on the School website
http://www.ing.unitn.it/dica/eng/phd_programme/courses.php#2006