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Abstract

Dynamic stability of uniform straining of a nonlinear elastic solid is known to require that all eigenvalues of the

acoustic tensor associated with the tangent elastic moduli be real and nonnegative. The focus of this note is to what

extent this conclusion applies to time-independent, elastoplastic materials. Nonlinearity of the elastic–plastic constit-

utive law imposes limits on validity of a solution to the linear problem for which the acoustic tensor is determined. The

effect of those limits on the conclusions about instability is examined. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a homogeneous material characterized by a linear constitutive relationship between the increments in
stress and strain, the propagation of a disturbance represented by a planar wave depends critically on the
eigenvalues of the acoustic tensor (Truesdell and Noll, 1965). The waves propagate with a real speed when
all eigenvalues of the acoustic tensor for any wave front normal are real and positive. Occurrence of
negative or complex eigenvalues is related to ‘divergence’ or ‘flutter’ growth of disturbances, respectively.
The critical case when one eigenvalue is zero is associated with the onset of strain localization. These
concepts are widely known; fundamental references are by Hadamard, Hill, Mandel and Rice (see, e.g.
Rice, 1977).

In this note, we shall concentrate on the flutter instability in elastic–plastic materials with two or more
constitutive branches (cones) of the incremental response; the divergence instability is also included in the
analysis. Two sources of nonlinearity characterize plastic flow. One is related to the incremental nonlin-
earity of the tangent constitutive operator and the other to its dependence on the current state. The latter
arises also in nonlinear elasticity, whereas the former is typical of the plastic behaviour. Despite the
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nonlinearities, the above classification with regard to the spectral properties of the acoustic tensor can be
straightforwardly extended to the elastoplasticity by defining the acoustic tensor for the tangent stiffness
moduli. Indeed, much effort has been directed towards determining the conditions for the onset of flutter
(full references to this topic can be found in Bigoni and Loret (1999)). However, the interpretation of the
instabilities in terms of the wave solution becomes less clear in view of the possibility of activating different
constitutive cones at different material points, which would invalidate the wave solution itself. As a con-
sequence, the physical interpretation of the occurrence of negative or complex eigenvalues of the acoustic
tensor for an elastoplastic material becomes uncertain. A reasonable conjecture is that an arbitrary small
disturbance in a uniformly strained material can grow and cross the domain of validity of the tangent
stiffness moduli (e.g. by producing elastic unloading somewhere). But what happens after this is presently
unknown. In fact, two opposite situations may be imagined, in which the perturbing oscillation may further
amplify or, contrarily, damp. Only the former possibility would correspond to, say, a ‘genuine’ instability.
Some evidence of flutter instability as triggered by the presence of a tractions-free boundary has been shown
numerically by Sim~ooes (1997), but this single study is insufficient to draw definitive, general conclusions.

This note is aimed at providing certain rigorous statements which shed some more light on the meaning
of flutter and divergence instabilities in incrementally nonlinear elastic–plastic solids. The two kinds of
nonlinearity mentioned above are taken into account by introducing limits on validity of the solution to the
linear problem for which the acoustic tensor is determined. The effect of these limits on the conclusions
about instability is then examined. Illustrative examples are provided by combining the classical nonas-
sociative plasticity with elastic anisotropy.

Notation: The notation employed essentially follows Gurtin (1981). In particular, the products of vectors
or tensors are indicated as follows: a � b ¼ akbk, A � B ¼ AhkBhk, ðAbÞh ¼ Ahkbk, ðABÞhk ¼ AhtBtk, ða� bÞhk ¼
ahbk, with the summation convention for repeated indices. The symbol i is reserved for the imaginary unit,
i ¼

ffiffiffiffiffiffiffi
�1

p
. The Euclidean norm is denoted by j � j, and I stands for the second-order identity tensor. The

second-order tensor assigned by a fourth-order tensor Co to a second-order tensor A is denoted by Co½A
:
ðCo½A
Þst ¼ Co

sthkAhk.

2. Problem formulation

Let us consider a homogeneous, arbitrarily anisotropic, plastically deforming material. The configura-
tion of a material element at time t ¼ 0 is taken as a fixed reference configuration for the Lagrangian
description adopted below. In a given state, the incremental response of the material is characterized by the
time-independent constitutive rate equation

_SS ¼ Cð _FFÞ; ð1Þ

where _SS is the material time derivative of the first Piola–Kirchhoff stress tensor, _FF is the material time
derivative of the deformation gradient F, or equivalently, _FF is the velocity gradient in the reference con-
figuration, and C is a state-dependent, nonlinear constitutive operator, positively homogeneous of degree
one with respect to its argument. The conditions for objectivity of the constitutive law need not be discussed
here.

Quantities that appear in the fundamental motion, whose stability is to be examined, are distinguished
by a superscript o. We shall assume that the fundamental (Lagrangian) velocity gradient _FFo corresponds to
nonzero strain rate and lies inside a certain constitutive cone in _FF-space such that the operator Cð�Þ re-
stricted to that cone becomes a linear operator, represented by a fourth-order, state-dependent tensor Co of
tangent moduli independent of _FF. For the purposes of this paper, it is convenient to use a weaker as-
sumption specified as follows:
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Cð _FFÞ ¼ Co½ _FF
 if j _FF� _FFoj < moj _FFoj; ð2Þ

where mo
6 1 is a positive constant such that the inequality defines a neighborhood of _FFo contained in the

mentioned constitutive cone. Evidently, fulfillment of the inequality in Eq. (2) with mo sufficiently small
ensures that the strain-rate direction associated with _FF is sufficiently close to the loading direction defined
by _FFo.

The simplest illustration of Eq. (2) is provided by the constitutive law of the classical nonassociative
elastoplasticity with smooth yield and plastic potential surfaces, where C at the yield point has two linear
constitutive branches, singled out by the sign of the scalar product between _FF and the normal, say N, to the
yield surface in F-space, Fig. 1. More general constitutive laws for metal single crystals and polycrystals,
with many yield surfaces intersecting at a vertex point, are also consistent with Eq. (2). Infinitely many yield
surfaces may also correspond to a linear constitutive relationship in the cone of fully active loading (Hill,
1967).

Generally, the variations in Co along a deformation path may be neglected only if the path length in the
deformation-gradient space is sufficiently small, say, less than some positive constant lo. Accordingly, we
introduce the assumption that

Co ¼ const if

Z t

0

j _FFðx; sÞjds6 lo: ð3Þ

We shall consider a plastically deforming, infinite, homogeneous medium, uniformly stressed at t ¼ 0 in
the assumed absence of body forces. The unboundedness of the domain, which allows boundary conditions
to be left unspecified, is a useful working assumption in material stability considerations (Rice, 1977). The
equations of motion are written in the basic and rate form as

DivS ¼ q€uu; Div _SS ¼ qu
...
; ð4Þ

respectively. Here, q is the mass density and Div is the divergence operator, both taken in the reference
configuration. The respective fundamental solution of the equations of motion (4), expressed in terms of
displacements u from the position x of a material point in the reference configuration, is

Fig. 1. Geometrical interpretation of the inequality in Eq. (2).
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uoðx; tÞ ¼ t _FFox; _FFo ¼ const; tP 0: ð5Þ
Physical validity of the fundamental solution is restricted by the requirement detFo > 0, with Fo ¼ Iþ t _FFo,
which is ensured by Eq. (3) if lo is sufficiently small.

As a version of the classical linear perturbation analysis, let us examine now a perturbed velocity field
(defined in the reference configuration)

vðx; tÞ ¼ voðxÞ þ cwðx; tÞ; voðxÞ ¼ _FFox; ð6Þ
where v ¼ _uu, c is a positive constant parameter and w is assumed in the standard form of a harmonic wave

w ¼ Refaeikðn�xctÞg; ð7Þ
where i ¼

ffiffiffiffiffiffiffi
�1

p
, n is the unit vector of propagation in R3, a 2 C3 is the (nonzero) wave amplitude vector,

k 2 Rþ is the wave number, c 2 C is the wave speed. Here, R and C denote spaces of real and complex
numbers, respectively, Rþ is the set of positive real numbers, and Re f gmeans ‘real value of’. The constant
c is taken sufficiently small to ensure validity of the constitutive equation (2), at least in some initial time
interval ½0; t�
.

Under the additional assumption (3) that Co ¼ const in both space and time, the rate equation of motion
(4) is satisfied by the velocity field (6) with Eq. (7) provided that

ðAoðnÞ � qc2IÞa ¼ 0; ð8Þ
where AoðnÞ is the acoustic tensor related to the prescribed fundamental branch (2) of C, defined by the
identity AoðnÞb � Co½b� n
n, to hold for every vector b. Note that Co½a� n
 need not be equal to Cða� nÞ
due to nonlinearity of the operator C.

The eigenvalues qc2 and eigenvectors a of the acoustic tensor AoðnÞ, which is nonsymmetric in general (as
in the case of nonassociative elastoplasticity), may be real or complex conjugate. Let c ¼ aþ ib and
a ¼ pþ iq satisfy Eq. (8), where a, b, p, q are real. The eigenvector a is normalized so that its magnitude
jaj ¼ 1, say. A perturbation (7) satisfying Eq. (4) is selected as a sum of two waves travelling in opposite
directions

wðx; tÞ ¼ ebktfp cos½kðn � x� atÞ
 � q sin½kðn � x� atÞ
g þ e�bktfp cos½kðn � xþ atÞ
 � q sin½kðn � xþ atÞ
g:
ð9Þ

It is immediate to verify that for this choice the accelerations vanish at t ¼ 0, i.e. _wwðx; 0Þ ¼ 0, which is
consistent with DivS ¼ 0 at t ¼ 0. Note that this requirement might be overlooked if only the second
equation in Eq. (4) were taken into account. The sign of b can be arbitrarily adjusted by replacing simply c
by its conjugate. For a real wave speed, i.e. for b ¼ 0, Eq. (9) describes a standing wave.

Suppose that the above perturbation in velocities is instantaneously superimposed at time t ¼ 0 on the
fundamental solution, with the initial condition uðx; 0Þ ¼ uoðx; 0Þ for displacements. Our aim is to examine
the case when c2 is not a nonnegative real number, i.e. when b 6¼ 0. If b ¼ 0 then either c2 > 0 which is the
regular case of propagation of a harmonic wave, or c ¼ 0 which corresponds to w independent of time in a
dynamic solution and to bifurcation within a band of a quasi-static solution (Rice, 1977). Straightforward
time integration of Eq. (9) yields the displacements in the subsequent motion free of further disturbances, in
the form

u ¼ uo þ c

ðb2 þ a2Þk
ebkt r cos½kðn � xð
�

� atÞ
 � s sin½kðn � x� atÞ
Þ � e�bkt r cos½kðn � xð þ atÞ


� s sin½kðn � xþ atÞ
Þ
�
; r ¼ bp� aq; s ¼ apþ bq; b 6¼ 0: ð10Þ

It should be noted that the validity of the above perturbed solution is limited by the requirement
detF > 0 and by the assumptions (2) and (3) allowing us to perform the integration leading to Eq. (10) at
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fixed values of a, b, p and q. Clearly, the condition b 6¼ 0 is necessary and sufficient for the existence of
perturbations that amplify exponentially in time for every nonzero value of k. There are two cases when
b 6¼ 0:

(A) some eigenvalue of AoðnÞ is real and negative; then a ¼ 0 (and q ¼ 0) which corresponds to mono-
tonic growth of stationary waves (‘divergence’ instability), or
(B) two eigenvalues of AoðnÞ are complex conjugate; then a 6¼ 0 (and a is complex) which corresponds to
growth of oscillations in both space and time (‘flutter’ instability).

In contrast to a problem which is fully linear from the outset, this does not conclude the demonstration
of instability for the material constitutive law (1) with the state-dependent, nonlinear constitutive operator
C. The following two important points remain to be analyzed.

• First, it remains to be shown that infinitesimal disturbances lead to finite deviations from the fundamen-
tal path without violating the condition of the constitutive linearization (2).

• Second, the finite deviations should be attainable within a sufficiently small increment in Fo to satisfy the
condition (3) of a fixed tangent moduli tensor Co.

These two questions are examined in the next section.

3. Instability of uniform flow

3.1. Deformation paths of unrestricted length

In the stability analysis that follows, the velocity perturbation (9) superimposed on the fundamental
motion will be considered for b > 0, since the sign of b 6¼ 0 is inessential. In view of the assumed sinusoidal
form of all spatial perturbations in velocities, the amplitude factor cebkt plays the central role. When b > 0,
a norm of the time-dependent spatial field wðx; tÞ grows exponentially in time in the perturbed motion. This
implies instability of the fundamental uniform flow (5) in the Lyapunov sense with respect to the velocity
norm if the equations of motion (4) are treated as fully linear. In the case examined in this paper, the
inequality in Eq. (2), related to the piecewise linearity of the constitutive rate equations, imposes a non-
linear constraint on the velocity gradient. Our first aim is to show that the conclusion drawn for b 6¼ 0
about the Lyapunov instability of the uniform flow (5) remains valid if the inequality constraint (2) is
imposed while the time domain is left unbounded assuming lo ¼ 1 in Eq. (3). Mathematically, this is an
expected result since the considerations of stability in the sense of Lyapunov may be a priori limited to a
neighborhood of the fundamental motion. However, the implications in the context of incrementally
nonlinear plasticity are less obvious, and therefore a detailed proof is provided below.

In the formal proof, it will be convenient to use the following seminorm of a vector field bðxÞ which is
related to the constraint (2), namely

kbk ¼ sup
x

jrbj; ð11Þ

where r is the gradient operator in the reference configuration. On introducing the equivalence between
any two sinusoidal fields that differ merely by a rigid translation in space, Eq. (11) provides a norm of w.
With that identification and for n and k fixed in time, any other spatial norm of a time-dependent sinusoidal
spatial field (9) or (10) is equivalent to Eq. (11). Recall that two norms kwk and kwk0 in the linear space of
vector fields w are equivalent if and only if
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m1kwk6 kwk06m2kwk; ð12Þ
for some positive constants m1, m2. In those circumstances, we may restrict ourselves to examine stability
with respect to the norm (11). Moreover, we will use the triangle inequality and its consequence

jkw1k � kw2kj6 kw1 þ w2k6 kw1k þ kw2k; ð13Þ
holding for every fields w1 and w2. On introducing the notation

M ¼ Mða; nÞ ¼ sup
h2R
jp� n sin hþ q� n cos hj; ð14Þ

and noticing that

M ¼ sup
x

jp� n sin½kðn � x atÞ
 þ q� n cos½kðn � x atÞ
j; ð15Þ

the seminorm (11) of the field w defined by Eq. (9) is bounded through Eq. (13) by

2Mk sinhðbktÞ6 kwkt 6 2Mk coshðbktÞ: ð16Þ
As a consequence, the distance in the sense of Eq. (11) between the fundamental and perturbed velocity
solutions, Eqs. (5) and (6), at time t is bounded by

2Mkc sinhðbktÞ6 kv� vokt 6 2Mkc coshðbktÞ; ð17Þ
with Mkc > 0 constant in time. From Eq. (9) it follows that the upper or lower bound is attained at instants
t such that sin2ðkatÞ ¼ 0 or 1, respectively. For divergence instability, i.e. a ¼ 0, the upper bound gives the
exact value of the distance at every instant.

Regarding for simplicity all quantities as nondimensionalized, the following statement on the Lyapunov
instability of the fundamental solution (5) with respect to the velocity-gradient distance is obtained.

Proposition 1. If, for some n, not all eigenvalues of Ao(n) are nonnegative real numbers and lo ¼ 1 in Eq.
(3) then

9 � > 0 8 d > 0 9 c; t� > 0 : kv� vokt¼0 < d ^ kv� vokt¼t� P � ð18Þ

and the inequality constraint in Eq. (2) is satisfied for t6 t�.

In words, Eq. (18) reads: There exists a positive number � such that for every positive number d, however
small, there is a velocity perturbation whose norm is arbitrarily small initially ðkv� vokt¼0 < dÞ and grows
in a free dynamic motion to a finite value kv� vokt¼t� P � reached at a certain time t� > 0. All this occurs
without violating the constraint in Eq. (2), while t� is not bounded from above.

Proof. Take a positive � < moj _FFoj=
ffiffiffi
2

p
(cf. Eq. (2)) 1 and for an arbitrary positive d take a positive

d� < minðd; �Þ. If some eigenvalue of AoðnÞ is not a real and nonnegative number then there exists b > 0
that defines the imaginary part of c. For an arbitrary k > 0, let

t� ¼ 1

kb
sinh�1

�

d�
� �

; c ¼ d�

2Mk
: ð19Þ

By inspection and with the help of Eq. (17), for these values of c and t� and for w defined by Eq. (9), we have

kv� vokt¼0 < d ^ kv� vokt¼t� P �: ð20Þ
Moreover, from the upper bound in Eq. (17) it follows that

1 The factor 1=
ffiffiffi
2

p
is related to the ratio of the bounds in Eq. (17) which is cothðbktÞ <

ffiffiffi
2

p
provided sinhðbktÞ > 1.
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j _FF� _FFojx;t 6 kv� vokt 6 2Mkc coshðbkt�Þ for t6 t�: ð21Þ

Recalling now that for every x there is sinh�1 x ¼ ln xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p� �
, and taking into account Eq. (19), we

obtain

2Mkc coshðbkt�Þ ¼ �þ d�

�=d� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=d�ð Þ2 þ 1

q < �
ffiffiffi
2

p
< moj _FFoj: ð22Þ

Condition (2) implies the fulfillment of the inequality in Eq. (2) up to time t� as required. This completes the
proof of Proposition 1. �

In the above statement, the norm (11) can be replaced by any equivalent norm, which results straight-
forwardly by applying the inequalities (12).

It is clear that the conclusion about instability at fixed k requires an infinite time interval since t� ! 1
as d ! 0. Under the assumption of _FFo fixed, an unbounded time interval corresponds to an unbounded
length of a deformation path, so that the proof of Proposition 1 required the assumption lo ¼ 1 in Eq.
(3).

The question arises whether instability can be proven with respect to a distance in displacement-gradient
rather than in velocity-gradient, which would correspond to a finite departure of the perturbed motion from
the fundamental path. In a fully linear problem an affirmative answer would be immediate. However, in
view of the assumed constraint (2) on the velocity gradient, the initial disturbance in velocities cannot be
replaced by another defined only in terms of displacements. This prompts us to retain the initial pertur-
bation in velocities and to ask whether such arbitrarily small perturbation can induce a finite distance in
displacement-gradient from the fundamental solution.

Application of Eq. (13) to Eq. (10) provides the estimates of the distance between the fundamental and
perturbed solutions in displacements, measured in the sense of Eq. (11), viz.

2Kc sinhðbktÞ6 ku� uokt 6 2Kc coshðbktÞ; ð23Þ

with Kc > 0 constant in time, where

K ¼ Kðc; a; nÞ ¼ 1

b2 þ a2
sup
h2R
jr� n sin hþ s� n cos hj; ð24Þ

with r and s defined in Eq. (10).
From Eq. (10) it follows that the lower or upper bound in Eq. (23) is reached at instants t such that

sin2ðkatÞ ¼ 0 or 1, respectively. In the case of divergence instability, i.e. a ¼ 0, the lower bound gives an
exact value of the distance at every instant.

The lower estimate (23) applied at the instant t� defined by Eq. (19) in the proof of Proposition 1 yields

ku� uokt� P �1 ¼
K
M

�

k
: ð25Þ

From Eq. (25) and Proposition 1 we obtain the proof of the following statement.

Proposition 2. If, for some n, not all eigenvalues of Ao(n) are nonnegative real numbers and lo ¼ 1 in Eq.
(3) then

9 �1 > 0 8 d > 0 9 c; t� > 0 : kv� vokt¼0 < d ^ ku� uokt¼t� P �1 ð26Þ

and the inequality constraint in Eq. (2) is satisfied for t6 t�.

This shows the Lyapunov-type instability (on an infinite time domain) of the uniform flow with respect
to two distances: the velocity-gradient distance kv� vokt¼0 is used to measure the strength of an initial
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disturbance, and the displacement-gradient distance ku� uokt, equal to zero at t ¼ 0, is used to define the
current distance between the fundamental and perturbed motions.

As in Proposition 1, the norm (11) can be replaced above by any equivalent norm of the spatially pe-
riodic fields involved.

As mentioned earlier, the above results are not unexpected. However, a too facile analogy to a fully
linear problem contains a pitfall which is avoided here by using the perturbation (9) imposed on the
fundamental velocity solution.

3.2. Short deformation paths

Instability established for an infinite time interval may have no physical meaning if the fundamen-
tal solution cannot be extended indefinitely in time. This is indeed the case for the plastic flow with a
constant velocity gradient _FFo 6¼ 0 if a physical limit is imposed on the strain magnitude. Moreover,
the tangent moduli tensor Co will vary along a deformation path for any realistic material model.
The variations may be neglected only if the path length in the deformation-gradient space is less than
some value, denoted by lo in Eq. (3), dependent on the desired accuracy of the constitutive descrip-
tion. Along the fundamental path (5), the current path length is jDFoj ¼ tj _FFoj. In any perturbed
motion that satisfies the inequality constraint in Eq. (2) up to an instant t�, the path length is bounded
by

Z t

0

j _FFðx; sÞjds6 tj _FFoj þ
Z t

0

j _FFðx; sÞ � _FFojds < ð1þ moÞj _FFojt� for t6 t�: ð27Þ

The inequality constraint in Eq. (3) will thus be satisfied in any time interval ½0; t�
 such that

t�6 to ¼ lo

ð1þ moÞj _FFoj
: ð28Þ

The statement (18) can be extended to arbitrarily small t� by appropriately adjusting the wave number k
which was so far arbitrary. For any positive lo and for an associated positive value of t� satisfying Eq. (28),
the first part of Eq. (19) can now be used to determine k instead of t� as before. With this as the only change
in the proof, from Proposition 1 we obtain the following corollary concerning instability of short defor-
mation paths.

Proposition 3. If, for some n, not all eigenvalues of Ao(n) are nonnegative real numbers then

9 � > 0 8 d > 08 t�6 to 9 k; c > 0 : kv� vokt¼0 < d ^ kv� vokt¼t� P � ð29Þ

and the inequality constraint in Eq. (2) is satisfied for t6 t�.

This means that the final inequality in Eq. (29) can be reached for lo arbitrarily small, for any
given fundamental deformation-rate j _FFoj. It should be noted that d ! 0 implies k !1 (the short-
wavelength limit) if a finite velocity-gradient distance measured by Eq. (11) is to be reached at a finite
t�.

The statement (29) expresses nothing else than the lack of continuous dependence of the velocity solution
on initial data, with respect to the norm (11). This in turn is connected with the well-known concept of ill-
posedness of the corresponding linear problem.

It may be interesting to note that it would be a flaw to formulate the statement (29) without any re-
striction on the velocity norm, just by analogy to the linear problem. Contrary to Proposition 1, the choice
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of a velocity norm in Proposition 3, where k can no longer be fixed in advance, is not fully arbitrary. 2 This
can be seen from the inequality

c coshðbktÞ < 1

k
mo

2M
j _FFoj for t6 t�; ð30Þ

obtained from Eq. (22). It implies that the amplitude of ðv� voÞ itself must tend to zero as k !1, although
the amplitude of the gradient of ðv� voÞ at a given t� can remain finite in the limit. In particular, the
difference in kinetic energy within any bounded spatial domain tends to zero in the limit, which raises some
doubts whether Proposition 3 may be interpreted as a proof of ‘genuine’ instability of plastic flow.

The next problem to be discussed is whether a property similar to Eq. (29) can be proven with respect to
a distance in displacement-gradient rather than in velocity-gradient, cf. Proposition 2. Perhaps unexpect-
edly, we will show that such extension is not possible under the assumptions introduced above.

Observe first that under the inequality constraint in Eq. (2) satisfied up to time t�, it is not possible to
reach a given finite distance in the displacement gradient between the fundamental and perturbed motions
within an arbitrarily small increment in Fo. This can be seen from the following simple estimate

ku� uokt 6mojDFojt� for t6 t�; ð31Þ

obtained analogously to Eq. (27). The possibility of reaching a finite value of ku� uok at arbitrarily small
jDFoj would be related to instability of equilibrium, which is not investigated here. The instability of plastic
flow and instability of equilibrium are fundamentally different concepts for materials obeying an incre-
mentally nonlinear constitutive law, 3 even if the plastic flow is regarded as quasi-static (Petryk, 1992).

Moreover, it turns out that the proof of Proposition 2 (carried out for lo ¼ 1 in (3)) cannot even be
extended to any bounded increment in Fo, that is to any finite time interval ½0; t�
 at fixed _FFo; this specifies
limitations of the linear stability analysis in application to processes of plastic deformation. The same is
shown for a finite lo if we take any positive t� satisfying Eq. (28) to fulfill the inequality in Eq. (3). Namely,
the following statement holds true.

Proposition 4. Irrespective of the type of eigenvalues of the acoustic tensor, if the inequality constraint in Eq.
(2) is satisfied for t6 t� then

8 t�6 to 8 �1 > 0 9 d > 0 8 k; c > 0 : kv� vokt¼0 < d ) ku� uokt6 t� < �1: ð32Þ

Proof. The assumption t� < to in Eq. (32) implies, through Eq. (28), that Eq. (3) holds true, which jointly
with the assumption (2), justifies the use of perturbation (9). Now, if b ¼ 0 then the implication in Eq. (32)
is trivial since in that case (9) describes a standing wave. It suffices thus to consider the case b > 0 which
corresponds to a perturbed motion (10).

Suppose that Eq. (32) does not hold, so that

9 t�6 to 9 �1 > 0 8 d > 0 9 k; c > 0 9 t6 t� : 2Mkc < d ^ ku� uokt P �1; ð33Þ

while the inequality constraint in Eq. (2) is satisfied for t6 t�.

2 However, the norm (11) in Proposition 3 can still be replaced by any norm k � k0 of the velocity gradient field such that Eq. (12) is

satisfied for all k.
3 The situation is different in the special case of an incrementally linear material where the inequality constraint in Eq. (2) is absent.

Then the perturbation (7) can be superimposed on the degenerate fundamental motion of zero velocities, i.e. on an equilibrium state. In

this case, the above established instability concerns equilibrium as well.
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If d! 0 then ku� uokt6 t� tends also to zero by the upper bound in Eq. (23), in contradiction to Eq. (33),
unless k !1 or k ! 0.

If k !1 as d! 0 then from the lower bound in Eq. (17) and the inequality in Eq. (2), we have

c sinhðbktÞ6 kv� vokt
2Mk

<
moj _FFoj
2Mk

; for t6 t�: ð34Þ

Hence, at each positive t6 t�, the lower bound in Eq. (23) tends to zero as k !1. Since the ratio of the
bounds in Eq. (23) tends to 1 in the limit, the upper bound in Eq. (23) tends to 0 at each positive t6 t� as
d ! 0, which contradicts Eq. (33).

Finally, if k ! 0 as d ! 0 then ku� uokt6 t� tends to the lower bound in Eq. (23), by the continuity
argument. But the lower bound tends to zero if k ! 0 as d ! 0, which leads again to the contradiction with
Eq. (33). This completes the proof of Proposition 4. �

Hence, a finite value of ku� uok cannot be reached within a finite increment in Fo in the class of per-
turbed motions (10) for arbitrarily small initial perturbations in velocities if the inequality constraint in Eq.
(2) is satisfied. The violation of the constraint in Eq. (2), implied by the instability of motion in the sense of
Proposition 3, may be followed later 4 by activation of constitutive branches other than the fundamental
constitutive cone. No attempt is made here to analyze the subsequent nonlinear behaviour of the material.
In other words, Proposition 4 does not imply that the fundamental solution is stable for a fully nonlinear
constitutive law, rather, it shows that the boundary of the constitutive domain defined by inequalities in
Eqs. (2) and (3) must be crossed before a finite deviation from the fundamental strain path is reached
following an arbitrarily small disturbance.

4. Examples

4.1. Nonassociative elastoplasticity

The simple example of the nonlinear constitutive rate equation (1) is provided by the constitutive re-
lationship of classical nonassociative elastoplasticity. When expressed in terms of the Eulerian strain rate D

and an objective symmetric stress flux K
�
, it takes the well-known form

K
�
¼ E½D
 � 1

H < Q � E½D
 > E½P
 if f ðK;KÞ ¼ 0;
E½D
 if f ðK;KÞ < 0;

�
ð35Þ

where, for every scalar c, hci ¼ maxfc; 0g is the operator which makes Eq. (35) incrementally nonlinear;
moreover, f is the yield function, K denotes a collection of internal variables, P and Q are the normals to
the smooth plastic potential and yield surfaces, respectively, E is the fourth-order tensor of current elastic
tangent moduli (possessing both the major and minor symmetries), and the plastic modulus H > 0 is related
to the hardening modulus h via

H ¼ hþQ � E½P
: ð36Þ

In particular, we can identify K
�
with the Oldroyd derivative of the symmetric Kirchhoff stress K ¼ SFT,

K
�
¼ _KK� LK� KLT; ð37Þ

where L ¼ _FFF�1 is the spatial velocity gradient and ð ÞT denotes a transpose.

4 That is, when the boundary of the fundamental constitutive cone in the strain-rate space is crossed by a perturbed solution.
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At stress points on the current yield surface f ¼ 0, the constitutive equation (1) corresponding to Eq.
(35) reads

_SSFT ¼ E½D
 þ LK� 1

H
hD � E½Q
iE½P
: ð38Þ

Under the loading assumption Do � E½Q
 > 0 in the fundamental motion, the equation (38) admits the
linearized form corresponding to Eq. (2), viz.

_SSFT ¼ E½D
 þ LK� 1

H
ðD � E½Q
ÞE½P
 if jD�Doj < mo

1 jD
oj; ð39Þ

where we can take mo
1 ¼ Do � E½Q
=ðjE½Q
j jDojÞ6 1. The fulfillment of the inequality in Eq. (39) with this

value of mo
1 ensures that Q � E½D
 > 0, which follows from

�D � E½Q
 ¼ ðDo �DÞ � E½Q
 �Do � E½Q
 < mo
1 jE½Q
j jD

oj �Do � E½Q
 ¼ 0:

An alternative graphical proof that the inequality in Eq. (39) implies Q � E½D
 > 0 is shown in Fig. 2 (with
the strain space defined relative to the current configuration). In turn, the inequality in Eq. (39) is readily
implied by the fulfillment of the inequality condition in Eq. (2) with mo sufficiently small, provided both jFj
and jF�1j are bounded. Explicitly, we can define mo ¼ mo

1 jD
oj=jLoj6mo

1 if F ¼ I.
Consequently, if the inequality conditions in Eqs. (2) and (3) are satisfied with lo sufficiently small then

no unloading occurs and the linearized constitutive relationship _SS ¼ Co½ _FF
 is valid at each instant, with an
explicit expression

Co ¼ Gþ I�F�1S� 1

H
G½PF
 � G½QF
; G ¼ ðI�F�1ÞEðI�F�TÞ; ð40Þ

deduced from Eq. (38), where F�T ¼ ðF�1ÞT and the tensor product � is defined such that A�Bð Þ½C
 ¼
ACBT for every second-order tensors A, B and C.

Moreover, since H, Q, P (and obviously F itself) vary in general along the fundamental path, the
simplifying assumption in Eq. (3) that Co is constant in time can only be physically admissible along de-
formation paths of sufficiently short length lo. This provides some evidence that the mathematical results of
Section 3.1 are only formal, while those of Section 3.2 may have physical meaning.

Fig. 2. Geometrical interpretation of the inequality in Eq. (39).
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4.2. Anisotropic elasticity

Further specifications are adopted with the aim to discuss mainly the flutter instability, understood in the
sense of Proposition 3 (however, with the reservations raised by Proposition 4). Following Bigoni and Loret
(1999)––where the interested reader is referred to for details––we assume an anisotropic elastic law in the
form

E ¼ kB� Bþ 2lB�B; ð41Þ

where k and l are two material constants subject to the restrictions l > 0 and 3kþ 2l > 0, B is a sym-
metric, positive defined second-order tensor and the tensor product � is defined in such a way that it assigns
to three tensors A, B and C the tensor A�Bð Þ½C
 ¼ AðCþ CTÞBT=2. In addition, we assume a simple form
for B, namely

B ¼ b1b� bþ b2ðI� b� bÞ; ð42Þ
describing a transversely isotropic elastic behaviour. In Eq. (42), the parameters b1 and b2 are assumed to
depend on a single angular parameter b̂b whose range is limited to 
0�; 90�½ by the positive definiteness of B:

b1 ¼
ffiffiffi
3

p
cos b̂b; b2 ¼

ffiffiffi
3

2

r
sin b̂b: ð43Þ

It may be interesting to note that isotropic elasticity is recovered when b2 ¼ b1 ¼ 1, or b̂b ¼ b̂biso � 54:74�.
If the current configuration is taken as reference so that F ¼ I momentarily, the acoustic tensor corre-

sponding to Co in Eq. (40) is

AepðnÞ ¼ AeðnÞ � 1

H
E½P
n� E½Q
n; ð44Þ

where AeðnÞ is the elastic acoustic tensor, defined as

AeðnÞ ¼ ðkþ lÞBn� Bnþ lðn � BnÞBþ ðn � KnÞI; ð45Þ
and

E½H
n ¼ k ðB �HÞBnþ 2lBHBn; for H ¼ P;Q: ð46Þ
Adopting Eqs. (44)–(46) we provide below necessary and sufficient conditions for flutter instabil-
ity, identified with the existence of complex conjugate eigenvalues of AepðnÞ for some n, under the
restrictive assumption that B, P and Q share a common eigenvector, orthogonal to b. With reference to
Fig. 3, in particular, let us assume that b lies in the plane spanned by k1 and k2 that are two of unit
eigenvectors ki, i ¼ 1, 2, 3, of K, so that b is singled out by the angle hr. In addition, we look for
propagation directions n lying on the plane spanned by k1 and k2 and, consequently, we denote by hn

the angle of inclination of n with respect to k1. As a consequence of the above assumptions, in the
reference system ki the acoustic tensor (44) has all elements in the third row and column null with the
exception of

Aep
33 ¼ lðn � BnÞb2 þ n � Kn;

a quantity which we assume to be strictly positive. Taking the trace and the determinant of the remaining
2 2 matrix, we get the sum and the product of the in-plane eigenvalues aepi of AepðnÞ

aep1 þ aep2 ¼ ae1 þ ae2 �
1

H
ðf1ðnÞ � f2ðnÞÞ;

aep1 a
ep
2 ¼ ae1a

e
2 þ

1

H
Ae
nnf2ðnÞ

�
� Ae

ssf1ðnÞ þ Ae
nsf3ðnÞ

�
;

ð47Þ
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where ae1 and ae2 are the in-plane eigenvalues of the elastic acoustic tensor A
eðnÞ of components Ae

nn, A
e
ss and

Ae
ns on the orthogonal unit vectors n and s, and

f1ðnÞ ¼ ðn � E½P
nÞðn � E½Q
nÞ; f2ðnÞ ¼ f1ðnÞ � E½P
n � E½Q
n;
f3ðnÞ ¼ ðn � E½P
nÞðs � E½Q
nÞ þ ðs � E½P
nÞðn � E½Q
nÞ:

ð48Þ

From Eq. (47) and introducing the definitions:

eðnÞ ¼ Ae
ns

Ae
nn � Ae

ss

; zðhÞ ¼ ðh � nÞ
2 � ðh � sÞ2

ðh � nÞðh � sÞ ; for h ¼ E½P
n;E½Q
n; ð49Þ

we get the necessary and sufficient conditions for the existence of complex conjugate eigenvalues of AepðnÞ
occurring at positive values of H:

f4ðnÞ � 4f1f2ð1� ezðE½P
nÞÞð1� ezðE½Q
nÞÞ > 0;

Ae
ns

e
f5ðnÞ ¼

Ae
ns

e
f1ð þ f2 þ 2ef3Þ > 0;

H 2
H�;Hþ½; H ¼
Ae
nn � Ae

ss

ðae1 � ae2Þ
2

f5
�


ffiffiffiffi
f4

p �
:

ð50Þ

where 5 it may be noticed that ðae1 � ae2Þ
2 ¼ ðAe

nn � Ae
ssÞ

2 þ ð2Ae
nsÞ

2
. Moreover, it can be observed from Eq.

(50) that the appearance of the complex eigenvalues of AepðnÞ is not influenced by the ‘geometrical term’ LK in

Eq. (38) (for the adopted definition of K
�
), a conclusion obtained for isotropic elastic law by Bigoni and

Zaccaria (1994) and limited here by the assumption that n belongs to the plane spanned by k1 and k2.

Fig. 3. Axis of elastic symmetry b, principal stress axes k1 and k2 and propagation direction n.

5 Conditions (50) were obtained by Bigoni and Loret (1999), in a somewhat more restrictive context and employing a slightly

different notation. Note that first part of Eqs. (49)2 and (50) of Bigoni and Loret (1999) contain (inconsequential) misprints.
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4.3. Drucker–Prager yield criterion

As a more specific example, we assume the Drucker–Prager yield criterion with deviatoric associativity,
namely

P ¼ cos v ŜSþ sin vffiffiffi
3

p I; Q ¼ cosw ŜSþ sinwffiffiffi
3

p I; ð51Þ

where ŜS 2 Sym is the unit norm deviatoric Cauchy stress.
The angular parameters w and v describe the pressure-sensitivity and the dilatancy of the material, re-

spectively. In addition to the above, we refer to uniaxial tension aligned with axis k1, so that the principal
components of ŜS are f

ffiffiffiffiffiffiffiffi
2=3

p
;�

ffiffiffiffiffiffiffiffi
1=6

p
;�

ffiffiffiffiffiffiffiffi
1=6

p
g. Assuming v ¼ 0, w ¼ 30�, b̂b ¼ 80�, hr ¼ 15�, k=l ¼ 1 and

H=l ¼ 0:5, and restricting the analysis to the infinitesimal theory, LK ¼ 0, Bigoni and Loret (1999) have
shown that flutter occurs for a narrow interval of inclinations hn ranging between �8� and �17�. Now the
same result holds true even when LK is not neglected in Eq. (38). However, the real part of eigenvalues of
the acoustic tensor depend on K. As an example, for hn ¼ �14�, we obtain aep1=2=l ¼ 0:2947 0:0533i
and aep3 =l ¼ 0:3631, for K ¼ 0; whereas we get: aep1=2=l ¼ 0:7654 0:0533i and aep3 =l ¼ 0:8338, for K having
principal values equal to f0:5l; 0; 0g.

Now, even if H is assumed constant and the geometrical term is neglected, the acoustic tensor still
depends on the current stress through P and Q. Finally, we note that, when the geometrical term is ne-
glected, the constitutive operator is positive definite for values of hardening modulus greater than
HPD

cr ¼ 0:4257l. Therefore, in our case flutter may occur when the tangent constitutive operator is positive
definite (so that strain localization is excluded within the ‘small strain’ theory).

4.4. Coulomb–Mohr yield criterion

We analyze here the special case of the Coulomb–Mohr yield criterion, when the stress state belongs to a
plane of the yield surface at a finite distance from a corner. Adopting now small strain theory and
T1 > T3 > T2, where Ti, i ¼ 1, 2, 3 are the principal components of Cauchy stress, the principal components
of tensors P and Q (here nonnormalized) are

fPg ¼ 1f þ sin v;� 1þ sin v; 0g; fQg ¼ 1f þ sinw;� 1þ sinw; 0g; ð52Þ

where v and w are the dilatancy and friction angles, respectively. The present model does not satisfy de-
viatoric associativity, so that general results for flutter instability are not available. However, under the
assumptions that the stress state is not in a vertex and that n lies in the plane 1–2, it is easy to shown that
flutter is excluded for isotropic elasticity. On the other hand, flutter becomes possible for anisotropic
elasticity of the type (41) and (42). In fact, taking v ¼ 0, w ¼ 30�, b̂b ¼ 80�, hr ¼ 15�, k=l ¼ 1 and H=l ¼ 2
we find intervals of angle hn where flutter occurs. As an example, for hn ¼ �14�, we obtain aep1=2=l ¼
0:2962 0:0189i and aep3 =l ¼ 0:3631.

We remark that even in this case, the tangent constitutive operator is positive definite, being
HPD

cr ¼ 1:7097l.
The peculiarity of this example is that, assuming H constant, the acoustic tensor is constant in a finite

neighborhood of the current state if the principal stress axes do not rotate with respect to the material (and
if the geometric term is neglected). However, the fact that––in special situations––condition (3) can be
verified for a finite value of lo still does not mean that a ‘genuine’ instability with respect to a strain distance
has been proved. Note in fact that Proposition (2) has been proved for infinite lo, while for finite lo and
within the constitutive domain defined by inequalities in Eqs. (2) and (3) we have proved an opposite
property expressed in Proposition (4).
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The presented examples have been obtained exploiting the effects of anisotropic elasticity, therefore
following an original idea of Bigoni and Loret (1999). They have shown in fact that anisotropic elasticity
may make flutter instability possible even when this instability is excluded for elastic isotropy. Since elastic
isotropy must be considered only a first approximation to the real behaviour of most materials, it may be
expected that flutter instability conditions can be met more often than believed so far. Then, Proposition 3
indicates that numerical problems are likely to appear when simulating dynamic processes in nonassociative
elastoplasticity. The constitutive models employed in the examples should be considered as simple proto-
types, nevertheless they incorporate features characteristic of the behaviour of granular materials, as for
instance pressure-sensitive yielding and plastic dilatancy. Also, an anisotropic elastic law of the type (41)
was proposed as a measure of elastic induced anisotropy in sand (Gajo et al., 2001).

5. Discussion and conclusions

For a linear constitutive law, ‘divergence’ and ‘flutter’ instabilities (formally associated with the existence
of negative or complex eigenvalues of the acoustic tensor) are related to monotonic or oscillatory growth of
periodic initial disturbances in an infinite homogeneous medium (Rice, 1977). In the relevant literature it is
often assumed that these concepts may be extended to elastoplastic materials (whose constitutive law is
always incrementally nonlinear). The aim of the present note was to examine the mathematical justification
of that extension.

For this purpose, spatially sinusoidal perturbations have been superimposed on the fundamental velocity
field (of constant gradient), with the amplitude sufficiently small to activate only the fundamental con-
stitutive branch. First, the constitutive operator has been assumed independent of the current state, but
incrementally piecewise linear. In result, the (expected) Lyapunov instability of the fundamental motion
defined on an infinite time interval (corresponding to deformation paths of unbounded length) has been
proven for the incrementally nonlinear materials in which a linear relationship between the rates of stress
and strain need hold merely in a certain neighborhood of the current velocity gradient (Propositions 1 and
2). Second, the assumption that the constitutive operator be independent of the current state has been
relaxed and applied only to sufficiently short paths in the deformation gradient space. Then it has been
shown that a vanishingly small initial perturbation of the fundamental velocity field grows to a finite
perturbation of the velocity gradient (not of the velocity itself) in an arbitrarily short time interval if the
superimposed wavelength is sufficiently short (Proposition 3). That rapid departure from the fundamental
straining direction enables attaining a boundary of the domain of application of the fundamental tangent
moduli within a small deformation increment. It is clear that the presence of an internal length scale in the
material could influence that conclusion; cf. the analysis by Sim~ooes and Martins (1998) of flutter instability
in friction problems.

However, the linear stability analysis on a finite time interval is inconclusive if the strain distance is
adopted for deviations from the fundamental solution. Instead of instability which might be expected by
analogy to the fully linear problem, in that case an opposite property has been proven irrespective of the
type of eigenvalues of the acoustic tensor (Proposition 4). Further insight in the problem requires a study of
solutions beyond the fundamental constitutive cone of the elastoplastic constitutive law, a task which falls
beyond the scope of the present note.
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