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Abstract

A new micromechanical model for nacre (mother-of-pearl) is proposed, based on an accurate description of the actual microstructure
of the material. In the small-strain regime (where damage and fracture are excluded), it is shown via homogenization techniques that the
mechanical behaviour of nacre is: (i) orthotropic, with a strong difference in directional stiffnesses; (ii) bimodular (different Young’s mod-
uli in tension and compression). A simple closed-form analytical solution, and a highly-accurate boundary-elements-based numerical
analysis, are developed to evaluate the macroscopic behaviour of nacre from the mechanical properties of its constituents. It is shown
that the predictions of our simple analytical model are in excellent agreement with the highly-accurate numerical analysis and with exist-
ing experimental data, and it is explained how our model can be further verified through new experiments. Importantly, we show that it is
essential to account for nacre’s bimodularity and anisotropy for the correct interpretation of published (and future) experimental data.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The surprisingly excellent stiffness and toughness prop-
erties of nacre [mother-of-pearl, the internal layer of many
mollusc shells (see for example Fig. 1) comprised of 95%
aragonite, a mineral form of CaCO3, with only a few per-
cent of biological macromolecules] have been known since
the experimental work of Currey [7,8]. The fact that these
mechanical characteristics remain unchallenged by the cur-
rent ceramic materials has further stimulated research.
Nacre has a peculiar ‘brick-mortar’ microstructure (the
so-called ‘stretcher bond’ in masonry nomenclature, see
Figs. 2 and 3 and compare to Fig. 4), where stiff and flat
aragonite crystals, the ‘bricks’ (0.2–0.9 lm thick and with
a mean transversal dimension ranging between 5 and
8 lm), are connected and separated by nanoscale organic
interlayers (20–30 nm, see Table 1), the ‘mortar’ [23,24].
0266-3538/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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While this microstructure may at least partially explain
nacre’s high fracture toughness, it does not seem compati-
ble with its high stiffness. The high fracture toughness
could be related to crack blunting/branching, as suggested
by Almqvist et al. [1], where it is, however, concluded that
ceramics with a microstructure mimicking mother-of-pearl,
though superior to other ceramics, do not attain the frac-
ture toughness of nacre. Damage and fracture mechanisms
in nacre are, however, not completely understood. For
instance, inelastic deformations have been considered by
Wang et al. [26], whereas Sarikaya et al. [22] advocate sev-
eral micromechanisms to explain the outstanding strength
of nacre: (a) crack blunting/branching, (b) micro-crack for-
mation, (c) plate pullout, (d) crack bridging (ligament for-
mation) and (e) sliding of layers. On the other hand, from
available experimental data (reported in Table 1), it is dif-
ficult to understand how a composite with a highly compli-
ant organic matrix may exhibit such a high stiffness.
Therefore, Schaffer et al. [23] and Song et al. [24] advocate
the presence of mineral bridges, joining the aragonite plate-
lets through the organic matrix. However, the existence of
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Fig. 1. South African Abalone shell (Haliotis midae, purchased in dry condition at ‘Orientimport’, Torrepedrera, Italy; photos taken with a Nikon D200
digital camera at the University of Trento). Left: inner part; right: outer part.

Fig. 2. A rough fracture surface of the South African Abalone shell shown in Fig. 1 [micrographs taken with a Jeol 5500 scanning electron microscope
(JEOL Inc., Peabody, Mass) at the University of Trento].

Fig. 3. A rough fracture surface of the South African Abalone shell shown in Fig. 1, etched by immersion in a 60% solution of HNO3 for 1 h. Center and
right: two details of the figure on the left, showing the ‘brick-mortar’ structure of nacre. Note that separations where bricks abut are evident [micrographs
taken with a Jeol 5500 scanning electron microscope (JEOL Inc., Peabody, Mass) at the University of Trento].
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such mineral bridges has been disproved or at least not
confirmed by Bruet et al. [3] and Lin and Meyers [16].

Prior to the present work, mechanical models were inca-
pable of explaining the high stiffness of nacre and, addi-
tionally, the anisotropy of the material (which appears
evident from consideration of the microstructure) has
apparently not been modeled. Nukala and Simunovic
[18] employ a discrete lattice where the aragonite platelets
are rigid, and use the shear-transmission hypothesis for the
organic matrix. The latter hypothesis has been advocated
by Ji and Gao [12], through the so-called ‘tension–shear
chain model’, originally proposed by Jäger and Fratzl
[11]. This is a simple model in which the organic matrix
is assumed on the one hand not to resist tension, but to
resist shear on the other. We will derive an improved ver-
sion of this model and employ it for tensile response paral-
lel to the aragonite lamellae, for which we will show it to
be quite accurate. Ji and Gao [12] also note that the micro-
structure of nacre should imply anisotropic overall behav-
iour, but they do not model it. Katti et al. [14,15] measure
and predict (with a finite element method) a stiffness of
20 GPa for the organic matrix and conclude that the min-



Table 1
Available experimental data: Young’s moduli parallel and orthogonal to the lamellae, E1 and E2, of the aragonite platelets, Ep, and of the organic matrix,
Eo; thickness of the organic layer, ho

Authors Material E1 ðGPaÞ E2 ðGPaÞ Ep ðGPaÞ Eo ðGPaÞ ho ðnmÞ
Jackson et al. [10] Pinctada nacre 73 70 100 4 –
Katti et al. [14] Red abalone – – 99.5 20 30
Wang et al. [26] Abalone 69 ± 7 66 ± 2 – – 20

Pearl oyster 77 ± 12 81 ± 4 – – 20
Bruet et al. [3] Trochus niloticus – – 92–79 – 30-300
Barthelat et al. [4] Red abalone – – 79 ± 15 2.84 ± 0.27 20-40

Fig. 4. An example of Roman masonry (Anfiteatro Flavio, built in the second half of the first century A.D. under Emperor Vespasiano at Pozzuoli,
Naples. Photo by D. Bigoni). A detail is shown at right of the masonry in the upper left part of the figure at left.
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eral bridges have no effect on the nacre averaged stiffness.
Moreover, the fact that the material should be bimodular
(namely, to have a Young’s modulus lower in tension than
in compression) has passed completely unnoticed
(although this behaviour should be inferred from the Jäger
and Fratzl [11] model; see, e.g., Fig. 2b of [12]) and is still
awaiting quantification.

The goal of the present article is to provide a microme-
chanical model capable of explaining and quantifying all
the above-mentioned mechanical features. Employing the
detailed description of Lin and Meyers [16] allows us to
formulate a micromechanical model, which through stan-
dard homogenization techniques yields the macroscopic
mechanical behaviour of nacre.1 This turns out to be:

� orthotropic, with a strong difference between normal
stiffnesses and shear stiffness; in particular, nacre is
much less stiff under shear than under uniaxial tension
(in the two directions parallel and perpendicular to the
aragonite platelets);
� bimodular, i.e. having a Young’s modulus in tension

smaller than in compression, in the direction parallel
to the lamellae long boundaries.

These results are obtained by developing a two-dimen-
sional, plane strain, micromechanical model of nacre
(Fig. 5), yielding averaged properties through a simple ana-
lytical approach and a standard numerical procedure (based
on a boundary element technique developed by us). The sim-
1 We consider in this paper mechanical behaviour at small strains, so
that damage leading to final failure will not be investigated here.
ple approach yields closed-form solutions to directly deter-
mine the four parameters defining the averaged properties
of nacre from knowledge of the mechanical properties of
the micro-constituents. The predictions of the simple
approach are found to be in excellent agreement with the
numerical results obtained from a much more refined model.
We note finally that although our model is based on hypoth-
eses obtained from the very recent paper by Lin and Meyers
[16], our strategy of solution can be easily modified to
account for new features, should these be found in the future.

Predictions of our model are shown to agree with exist-
ing experimental data, and simple formulae are provided to
extract two of the four parameters defining our model from
three (or four) point macroscopic bending experiments
(without knowledge of the micromechanical properties).
Importantly, we show that it is essential to account for
nacre’s bimodularity and anisotropy for correct interpreta-
tion of the experimental data.

2. Mechanical model for nacre

Our model is built on the very accurate and recent
observations and data reported by Lin and Meyers [16]
and is sketched in Fig. 5. In particular, the aragonite
platelets are idealized as rectangular elastic isotropic
blocks (with Lamé moduli kp and lp) joined along the
lamellar ‘long’ boundaries by the organic matrix, also
taken to be linearly elastic and isotropic (with Lamé mod-
uli ko and lo). This system is deformed under plane strain
conditions. It is important to note that, along the short
edges of the aragonite platelets (where these abut), Lin
and Meyers [16] find a simple contact without any organic



Fig. 5. Sketch of the model for the mechanical behaviour of nacre, where aragonite platelets are modeled as ‘bricks’ glued by a ‘mortar’ of organic matrix
along the basal planes, but in unbonded unilateral contact along lateral surfaces.
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glue. We have idealized this as a unilateral contact (so
that, along the short edges, the platelets behave as per-
fectly jointed in compression, whereas these are com-
pletely disconnected under tension). This idealization is
supported by: (i) direct observations by Lin and Meyers
[16]; (ii) the fact that fracture surfaces do not cross arago-
nite platelets, which are seen simply to slide one with
respect to the other [21,9]; (iii) the fact that the compres-
sive strength was found to be 1.5 times the tensile strength
by Menig et al. [17]; (iv) the fact that strains much larger
at the tensile than at the compressive surface have been
found in three-point bending by Wang et al. [26]. Clearly,
the unilaterality of contact introduces a nonlinearity in
the model. We will see that this can be easily handled
at the cost of some approximations.

2.1. Homogenization

The above-introduced model of nacre is periodic and is
very similar to typical models for masonry [19,2,5]. The goal
of homogenization theory (which has been thoroughly
developed for periodic elastic media, see for instance San-
chez-Palencia [20]) is to derive from a microstructure a mac-
roscopic response valid for an effective continuous
equivalent medium. To this purpose, a representative vol-
ume element is considered, which, due to the symmetry of
our structure, is selected as sketched in the detail of Fig. 5.
The homogenization is performed in the following steps.

� The representative volume element (of volume V

and external surface S having outward unit normal vector
ni) is to be subjected to prescribed mean strain ��ij. To this
purpose, the average strain theorem (e.g., [13])

��ij ¼
1

V

Z
V
�ij dV ¼ 1

2V

Z
S
ðuinj þ ujniÞdS; ð1Þ

(where ui is the displacement vector, �ij the related
strain) allows us to prescribe the mean strain in terms
of an appropriate displacement on the boundary.
� The mean stress �rij produced by the application of the

mean strain must be (numerically or analytically) evalu-
ated on the representative volume element. The average
stress theorem (e.g., [13])

�rij ¼
1

V

Z
V

rij dV ¼ 1

V

Z
S

riknkxj dS; ð2Þ

(where xj is the position vector and rij the stress tensor)
allows us to work in terms of tractions on the boundary.
� With the two steps above, an average strain/average
stress relation is found, which, when compared to a
effective stress/strain relation of the type

�rij ¼ Eijhk��hk; ��ij ¼ E�1
ijhk�rhk; ð3Þ

yields the determination of all independent material con-
stants defining the composite modulus tensor Eijhk.

Due to the peculiar microstructural geometry, it is well-
known that masonry loaded in-plane follows an aniso-
tropic elastic description. Surprisingly, the fact that the
microstructure of nacre (which is almost identical to
masonry) implies an anisotropic elastic macroscopic
response appears never to have been modelled. For the
microstructure of nacre, the effective elastic tensor Eijhk is
orthotropic, which in a two-dimensional setting has only
the following non-null components

E1111 ¼
E1

1��m12�m21

; E2222 ¼
E2

1��m12�m21

;E1122 ¼
E1�m21

1��m12�m21

;

E2211 ¼
E2�m12

1��m12�m21

; E1212 ¼ E1221 ¼ E2121 ¼ E2112 ¼G12: ð4Þ

The inverse tensor E�1
ijhk has the following non-null

components

E�1
1111 ¼

1

E1

; E�1
2222 ¼

1

E2

; E�1
1122 ¼ �

�m21

E2

; E�1
2211 ¼ �

�m12

E1

;

E�1
1212 ¼ E�1

1221 ¼ E�1
2121 ¼ E�1

2112 ¼
1

4G12

; ð5Þ

where �m12, �m21 are the two plane strain Poisson ratios, and
E1, E2, G12 are the two plane strain elastic tensile moduli
and the plane strain shear modulus, subject to the symme-
try condition

�m12

E1

¼ �m21

E2

; ð6Þ

so that through the homogenization technique we must
identify four independent material constants. Note that in
the particular case of isotropy, the four constants reduce
to the two plane strain constants

E1 ¼ E2 ¼
E

1� �m2
; �m21 ¼ �m12 ¼

�m
1� �m

; ð7Þ

in which E and �m are the usual (three-dimensional) elastic
constants (Young’s modulus and Poisson’s ratio).

The above four constants can be identified by subjecting
the representative volume element to three independent



Fig. 6. The three modes of deforming the representative volume element shown in Fig. 5 needed to determine the four constants comprising the effective
constitutive tensor, Eq. (4).
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deformation components (which, employing the symme-
tries present, can be reduced to the three boundary dis-
placements illustrated in Fig. 6), calculating the
corresponding averaged stress components and comparing
to Eq. (3).
2 It can be shown using the theorem of minimum potential energy that
the assumption of uniform shearing yields an upper bound to Et

1, given by
Eq. (9) with b ¼ 0.

3 It can be shown using the theorem of minimum potential energy that
the assumption of uniform longitudinal strain yields an upper bound to
Et

1, given by Eq. (10) with a ¼ 0.
2.2. A simple, closed-form homogenization model for nacre

To develop simple, closed-form formulae for the aniso-
tropic and bimodular elastic response of nacre, we begin
by observing that simple mechanical considerations sug-
gest that the unilateral contact between aragonite platelets
plays an important role only under tension aligned paral-
lel to the x1 axis. On the other hand, when subject to com-
pression along the x1 axis, tension/compression parallel to
the x2 axis, and shear parallel to the axes, the unilaterality
of the contact plays a negligible role and the material
behaves as a laminated medium composed of aragonite
and organic matrix layers. The accuracy of these assump-
tions was confirmed by use of a more refined numerical
model.

2.2.1. Unilateral model: determination of Et
1 for tensile

loadings
The response to a tensile loading parallel to the x1 axis,

where the aragonite platelets are disconnected (where these
abut), can be obtained by borrowing and improving results
from Jäger and Fratzl [11] (see [12], their Eq. (5)). This sim-
ple model is based on the fact that under such an applied
tensile stress, the mineral plates carry most of the tensile
load, while the organic matrix transfers the load between
the plates via shear. The effective modulus of the composite
for tensile loading along axis x1, Et

1, can be expressed in our
notation (see Fig. 5) as [12]

Et
1 ¼

Ep

ho

hp
þ 1

� �
4

Ephpho

GoL2
p
þ 1

� � ; ð8Þ

where Go denotes the shear modulus of the organic matrix,
Ep the Young’s modulus of the aragonite platelets, hp and
ho the thicknesses of the aragonite platelets and of the or-
ganic layer, and Lp the aragonite platelets’ length.

With the goal of generalizing (8) so that its improve-
ment agrees more closely with our accurate numerical cal-
culations, we derive it as follows. First, we consider the
limiting case in which the composite material is consid-
ered to be made up of infinitely rigid (aragonite) platelets
and soft (organic) layers. When pulled in tension, the
material deforms as sketched in Fig. 7, left. Since the only
deformation is the shearing of the soft layers, assuming
uniform shearing of the soft layers2 yields the elastic mod-
ulus as

Et
1 ¼
ðLp � bÞLpGo

4hoðho þ hpÞ
: ð9Þ

where Lp P b P 0 is a length parameter, accounting for
the fact that the uniform shearing solution violates mo-
ment equilibrium of the shearing stresses where the soft
layers are separated. Therefore, parameter b allows us
to account for the fact that there is a small transition
zone where r12 increases from zero to its full value, so
b� Lp.

Second, we consider now the other limiting case, in
which the soft (organic) layers are absent (Fig. 7, right)
and the (aragonite) platelets are elastic and perfectly
bonded to each other. Subjecting this structure to longitu-
dinal loading and neglecting deformation of the layer near
the detachment zones we obtain3

Et
1 ¼

Ep

4 a
Lp
þ 1

; ð10Þ

where the length parameter a ðLp=4 P a P 0Þ has been
introduced. This is similar to the parameter b and permits
us to account for the fact that there is a small transition
zone, at the unbonded platelet end, in which r11 increases
from zero to its full value, so a� Lp. When the transition
zone length is zero (i.e. a ¼ 0) the elastic modulus is that of
the intact material. Clearly the behaviour of the actual
composite lies between these limiting cases. Combining,
therefore, the two limiting cases as springs in series (i.e.
summing the compliances) in proportion to the volume



Lp

ho

hp

Lp

hp

2α

β/4

Fig. 7. The Jäger–Fratzl–Ji–Gao model in the limit cases of rigid platelets (left) and null thickness of the organic layers (right). Transition zones of lengths
a and b have been introduced into the models (shown dashed).
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fraction of each material, where the platelet volume frac-
tion is

U ¼ hp

ho þ hp

; ð11Þ

(U ¼ 1 corresponds to the limiting case shown at Fig. 7
right, while U ¼ 0 to the limiting case shown at Fig. 7 left)
we obtain

1

Et
1

¼
4h2

pð1� UÞ
LpðLp � bÞGoU

2
þ

4 a
Lp
þ 1

UEp

: ð12Þ

Eq. (12) can be rewritten as

Et
1 ¼

Ep

ho

hp
þ 1

� �
4 Ephpho

GoLpðLp�bÞ þ 4a
Lp
þ 1

� � ; ð13Þ

which is a generalization of the Jäger–Fratzl–Ji–Gao mod-
el, in the sense that this model is retrieved when a ¼ b ¼ 0.

Since parameter b=Lp is small, we can define a new
parameter c as

c
Lp

¼ Ephpho

GoL2
p

4b
Lp

þ 4a
Lp

; ð14Þ

so that a Taylor series expansion of Eq. (13) in b=Lp and
then use of Eq. (14) yields

Et
1 ¼

Ep

ho

hp
þ 1

� �
4

Ephpho

GoL2
p
þ c

Lp
þ 1

� � ; ð15Þ

again reducing to the Jäger–Fratzl–Ji–Gao model, when
c ¼ 0. Eq. (15) will be shown to yield a more accurate
approximation than Eq. (8).
2.2.2. Layered model: determination of Ec
1, E2, �m12 and �m21 for

compressive loadings

When loaded in compression or under shear, nacre
behaves (following our simplifying assumptions) as a
monolithic laminate material, composed of uniform iso-
tropic laminae of thicknesses hp and ho (see Fig. 5).
Homogenization of this type of material is standard and
can be found for instance in Willis [27]. However, for
completeness, we provide a sketch of the approach here.
We assume ��22 ¼ ��12 ¼ 0 and �11 ¼ ��11 ¼ constant in all
laminae (so that compatibility is satisfied). Uniform r11

and r22 are generated, the former different in each lamina
(but trivially satisfying equilibrium) and the latter must be
required to be equal in each lamina (and equal to the
mean value �r22) by equilibrium considerations at the
interface. It follows that in a generic layer (having elastic
constants E and m)

r11 ¼
��11E þ �r22mð1þ mÞ

1� m2
: ð16Þ

Using Eq. (16) in the condition ��22 ¼ 0, valid for the unit
cell, we obtain

E2211 ¼
�r22

��11

¼ m
1� m

D E ð1þ mÞð1� 2mÞ
Eð1� mÞ

� ��1

; ð17Þ

where the bracket h i is used to denote the mean value of a
generic function w as follows

hwðE; mÞi ¼ howðEo; moÞ þ hpwðEp; mpÞ
ho þ hp

: ð18Þ
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Using Eq. (17) in Eq. (16) and averaging, we obtain

E1111 ¼
�r11

��11

¼ E
1� m2

� �
þ m

1� m

D E2 ð1þ mÞð1� 2mÞ
Eð1� mÞ

� ��1

:

ð19Þ
Finally, we impose a mean strain whose only non-zero

component is ��22. Analogously to the previous case, we
obtain for a generic layer (defined by E and m)

r11 ¼
�r22m

1� m
; ð20Þ

so that

E2222 ¼
�r22

��22

¼ 1� m� 2m2

Eð1� mÞ

� ��1

: ð21Þ

Hence, the effective elastic constants Ec
1, E2, �m12 and �m21 can

be determined by employing Eq. (4) as

Ec
1 ¼

Eohoð1� m2
pÞ þ Ephpð1� m2

oÞ
ðho þ hpÞð1� m2

pÞð1� m2
oÞ

;

E2 ¼
EoEpðho þ hpÞ½Eohoð1� m2

pÞ þ Ephpð1� m2
oÞ�

C
;

�m21 ¼
EoEpðho þ hpÞð1þ mpÞð1þ moÞ½mohoð1� mpÞ þ mphpð1� moÞ�

C
;

�m12 ¼
mohoð1� mpÞ þ mphpð1� moÞ
ðho þ hpÞð1� mpÞð1� moÞ

;

ð22Þ
where

C ¼ hohp½E2
pð1þ moÞ2ð1� 2moÞ þ E2

oð1þ mpÞ2ð1� 2mpÞ
þ 2EoEpmompð1þ mpÞð1þ moÞ�
þ EoEpðh2

o þ h2
pÞð1� m2

pÞð1� m2
oÞ: ð23Þ
4 This code has been developed at the Computational Solids &
Structural Mechanics Laboratory of the University of Trento, whose
executable is available at: http://www.ing.unitn.it/dims/laboratories/
comp_solids_structures.php.
2.2.3. Layered model: determination of G12

In order to determine the effective shear modulus of the
composite, we consider again the monolithic layered model
considered before and we prescribe a mean strain ��12,
requiring r12 ¼ �r12 in all layers. We obtain

G12 ¼ E1212 ¼
�r12

��12

¼ 1

2

1þ m
E

� ��1

; ð24Þ

which becomes

G12 ¼
EoEpðho þ hpÞ

2½Ephoð1þ moÞ þ Eohpð1þ mpÞ�
: ð25Þ

Formulae (15), (22), and (25) represent the results of our

simple homogenization approach; these allow a relation

between the micromechanical geometry and properties and

the macroscopic, effective behaviour. As a simple check, note
that in the special case Eo ¼ Ep ¼ E and mo ¼ mp ¼ m, Eqs.
(22) and (25) yield the correct plane strain isotropic con-
stants: E1 ¼ E2 ¼ E=ð1� m2Þ, m12 ¼ m21 ¼ m=ð1� m2Þ, and
G12 ¼ E=ð2þ 2mÞ.

It should be noted that in order to use the bimodular
model that we propose for stress states different from uni-
axial tension or compression, a criterion for dividing strain
space into compression and tension subdomains is needed
(something analogous to a yield criterion in strain space
plasticity), and continuity of the stress/strain law should
be enforced (see [6] for details). We do not pursue this sub-
ject further here.

2.3. Results from a boundary-elements-based numerical

technique

Since via the averaging theorems we can work with dis-
placements and tractions on the surface of the representa-
tive volume element, a numerical boundary element
technique seems to be particularly appropriate. We have
used a general-purpose Fortran 90 code for two-dimen-
sional analysis.4 In the code, linear (constant) shape func-
tions for the displacements (tractions) at the boundary
are assumed, and the material has been taken to be linear
elastic, with Lamé moduli k and l. The unit cell (see
Fig. 5) has been discretized along boundaries parallel to
the x1 axis employing 50 elements and along the boundaries
parallel to the x2 axis using 20 elements for the aragonite
platelets and 10 elements for the organic matrix layer. Fol-
lowing Sarikaya et al. [22], the thickness of the aragonite
plates and of the interlayers have been chosen respectively
as hp ¼ 0:5 lm and ho ¼ 20 nm, while the length of the
plates has been selected as Lp ¼ 5 lm.

In the numerical analyses, both the aragonite plates and
the organic interphase have been modelled as linear elastic
materials, having Young’s moduli Ep ¼ 100 GPa and Eo

ranging between 0 and 10 GPa to cover the range of values
experimentally measured (see Table 1) (the Poisson ratio
has been taken equal to 0.33 for both materials). The uni-
laterality of the contact has been accounted for by using a
small gap where platelets abut and confirming that this gap
opens under tensile applied loading, while no gap was used
under compressive loading.

Results of the analysis are reported in Figs. 8 and 9,
together with the predictions of the simple analytical for-
mulae, Eqs. (22) and (25) and the Jäger–Fratzl–Ji–Gao
model, Eq. (8), and our improved version, Eq. (15), with
c ¼ 0:26 Lp and labelled ‘Proposed model’. In Fig. 8 the
effective moduli (normalized by Ep) are reported versus
the normalized Young’s modulus of the organic matrix,
Eo=Ep, while the same effective moduli are reported versus
the thicknesses ratio ho=hp (see Fig. 5) in Fig. 9. The numer-
ical simulations reported in Figs. 8 and 9 have been per-
formed under both the assumptions of disconnection
(tensile loading) and perfect contact (compressive loading)
at the unilateral contact between aragonite platelets. The
results show clearly that the unilaterality of the contact
only plays a significant role for tension parallel to x1 axis

http://www.ing.unitn.it/dims/laboratories/comp_solids_structures.php
http://www.ing.unitn.it/dims/laboratories/comp_solids_structures.php
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(there is a small effect in the shear case). Moreover, it is
clear from Figs. 8 and 9 that the agreement with the simple
theory, Eqs. (15), (22) and (25), is excellent.

Note also that formula (15), employed with c ¼
0:26 Lp, clearly improves upon that of Ji and
Gao [12], Eq. (8), based on the Jäger and Fratzl [11]
model.

It is important at this point to quantify the degree of
anisotropy and bimodularity of the material, since these
two properties have not previously been modelled for nacre.
To this purpose, we report in Fig. 10 the tension/compres-
sion ratio of the effective Young’s moduli Et

1=Ec
1 (equal to 1

when bimodularity is absent) and in Fig. 11 the ratios
Et

1=EAv, Ec
1=EAv, E2=EAv, G12=GAv, where

EAv ¼
Et

1 þ Ec
1 þ E2

3
; �mAv ¼

�mt
12 þ �mc

12 þ �m21

3
;

GAv ¼
EAv

2ð1þ mAvÞ
; ð26Þ

so that the ratios are equal to 1 in the case of isotropy and
equal behaviour in tension and compression.

To better quantify the anisotropy and bimodularity
effects, we introduce a (unit norm) uniaxial stress in the
direction of the unit vector ni as

rij ¼ �ninj; ð27Þ
(taken positive for tension and negative for compression)
so that the normal stress and strain components in the
direction ni are

rnn ¼ �1; �nn ¼ ni�ijnj ¼ �ninjEijhknhnk: ð28Þ
Since in plane strain ni becomes a function of the incli-

nation angle h with respect to the x1 axis, we can define
the elastic moduli in tension and compression, respectively,
EtðhÞ and EcðhÞ, as

EtðhÞ ¼ 1

��t
nnðhÞ

; EcðhÞ ¼ � 1

��c
nnðhÞ

: ð29Þ

Therefore, a polar plot of Eqs. (29), obtained by using
Eqs. (15), (22) and (25) in Eq. (5), allows a visual quantifi-
cation of the elastic anisotropy. This is reported in Fig. 12,
after normalization by Ec

1. Since the graphs would reduce
to unit circles in the case of isotropy and equal behaviour
in tension and compression, the strong degrees of material
anisotropy and bimodularity are evident.

Although parametric investigations are reported in the
graphs of Figs. 10 and 11, the ratio Eo=Ep usually (see Table
1) takes values between the two cases considered in Fig. 12,
namely, 0.01 and 0.04. We can, therefore, conclude that:

� the ratio Et
1=Ec

1 ranges between 0.5 and 0.8, showing that
bimodularity is an important effect (a fact previously not
understood, and, therefore, not tested);
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� both the ratios Ec
1=EAv and E2=EAv lie near 1, (a fact con-

sistent with experimental results by Jackson et al. [10]
and Wang et al. [26]);
� the ratio G12=GAv ranges between 0.3 and 0.6, showing a

strong difference in degree of anisotropy between the
shear and Young’s moduli (a fact noticed also by Jack-
son et al. [10]).
3. Comparison with experimental data

To compare the predictions of our model with available
experimental data, we refer to Table 1, where data taken
from the literature are reported.

Before discussing the model’s predictions, we note that
the experimental results reported in Table 1 have been
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mainly determined via three-point bending tests. These
tests are usually interpreted by employing the linear theory
of unimodular isotropic elasticity, but, in light of our find-
ings, these should instead be interpreted with formulae
valid for bimodular, orthotropic elasticity. These are derived
in Appendix A, and summarized here:

� For three-point bending of a beam of span l, thickness h

and loaded by a force per unit depth P, the deflected
shape of the neutral axis is

u2ðx1Þ ¼
ð1þ ffiffiffi

c
p Þ2Px1ð3l2 � 4x2

1Þ
16Et

1h3
þ 3Px1

5G12h
; x1 2 ½0; l=2�;

ð30Þ
(where c ¼ Et

1=Ec
1, and c ¼ 1 corresponds to equal behav-

iour in tension and compression) so that the mid-span ver-
tical displacement d divided by the applied load P is

d
P
¼ ð1þ

ffiffiffi
c
p Þ2

16Et
1

l
h

� �3

þ 3

10G12

l
h
: ð31Þ

� For four-point bending of a beam of span l, thickness h

and loaded at x1 ¼ l0 by a force per unit depth P
(neglecting shear deformation), the deflected shape of
the neutral axis is
u2ðx1Þ ¼
ð1þ ffiffiffi

c
p Þ2Px1

2Et
1h3

ð3ll0 � 3l2
0 � x2

1Þ; x1 2 ½0; l0�

u2ðx1Þ ¼
ð1þ ffiffiffi

c
p Þ2Pl0

2Et
1h3

ð3x1ðl� x1Þ � l2
0Þ; x1 2 ½l0; l=2�

ð32Þ

so that the vertical displacement d at x1 ¼ l0, i.e. where
the vertical force P is applied, is

d
P
¼ ð1þ

ffiffiffi
c
p Þ2

8Et
1

l0ð3l2 � 4l2
0Þ

h3
: ð33Þ

It is clear from Eqs. (31) and (33) that using three or
four-point bending tests we can only identify two
parameters

ð1þ ffiffiffi
c
p Þ2

Et
1

; and G12;

so that the full exploration of bimodularity and orthotropy
requires use of at least one additional test (such as for in-
stance a direct tension or compression test or, perhaps,
nanoindentation).
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Moreover, the effect of low shear modulus G12 only
plays a role for sufficiently high values of h=l. The experi-
ments performed by Jackson et al. [10] refer to very low
values of h=l, so that shear deformation should be negligi-
ble. However, bimodularity should play an important role
in those experiments, and, therefore, the Young’s modulus
obtained by Jackson et al. must be corrected before com-
paring it to the prediction of our model. This correction
can be obtained by considering Eq. (31) without shear
deformation, with c ¼ 1, as used by Jackson et al., and
with c < 1, as found by us. The result is the relationship

E1 ¼
4Et

1

ð1þ ffiffiffi
c
p Þ2

; ð34Þ

where E1 is the Young’s modulus in the direction of the x1

axis, assuming equal behaviour in tension and compres-
sion. It should be noted that there is no difference between
the Young’s modulus in the direction of the x2 axis found
by us and by Jackson et al., since bimodularity does not
play a role in that case.

Eq. (34) is plotted in Fig. 13, for the three values
c ¼ f1; 0:8; 0:6g. The grey zone denotes the parameter
range of interest. We observe that the correction is
significant and that we find values of E1=Ep in the range
0.7–0.8, in agreement with the experimental data reported
in Table 1.

4. Conclusions

Within the framework of the small-strain behaviour of
nacre (mother-of-pearl), we have accounted for the first
time for the facts that the material response is

� orthotropic, with low shear stiffness;
� bimodular (lower Young’s modulus in tension than in

compression).

To characterize this material from the knowledge of the
microstructure, we have provided:

� a simple analytical model,
� and a highly-accurate numerical analysis,
both based on a sound micromechanical approach. We
have also provided simple, closed-form formulae to deter-
mine two of our four macroscopic moduli directly from
macroscopic three and four-point bending tests on the
composite material. This provides a direct check of our
constitutive model, since its macroscopic moduli are com-
pletely determined from the constituents material moduli
and the composite microstructure. The comparison with
available experimental data is excellent, and we expect that
future experiments will further validate our model.
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Appendix A. Bending of an orthotropic, bimodular beam

deformed in plane strain

Let us consider a bimodular beam in plane strain sub-
jected to bending, for example, three-point bending as illus-
trated in Fig. 14. Since only normal strains are involved for
bending, bimodularity reduces to switching between two
possible behaviours as a function of the sign of the strain
and stress. It is, therefore, expedient to introduce a piece-
wise nonlinearity for certain quantities. We denote, for
instance, the elastic modulus in the direction parallel to
the x1 axis by eE1, meaning

eE1 ¼ Et
1Hð�11Þ þ Ec

1Hð��11Þ; ðA:1Þ
where for conciseness bars over the symbols have been
dropped, so that Et

1 and Ec
1 are the two composite plane

strain Young’s moduli in tension and compression, respec-
tively, and H is the Heaviside step function. An analogous
use of variables with a superposed tilda will be made in the
following.

For plane strain bending, it is assumed that the resultant
force in the direction of the x1 axis is nullZ h=2

�h=2

�11ðx2ÞeE1 dx2 ¼ 0; ðA:2Þ
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and that the applied bending moment per unit thickness M

is given by

M ¼
Z h=2

�h=2

�11ðx2ÞeE1x2 dx2; ðA:3Þ

where h is the height of the beam. The strain component �11

is assumed to vary linearly along the direction of the x2

axis, so that from Eqs. (A.2) and (A.3) we obtain

�11ðx2Þ ¼
3M ½hð1� cÞ þ 2x2ð1þ

ffiffiffi
c
p
Þ2�

2Et
1h3

; ðA:4Þ

where c ¼ Et
1=Ec

1. Therefore, the neutral axis is defined by

x2 ¼
h
2

ffiffiffi
c
p � 1ffiffiffi

c
p þ 1

; ðA:5Þ

so that its position is independent of the applied moment.
From the bimodular, two-dimensional stress–strain rela-
tionship for an orthotropic material, we find

�11 ¼
r11eE1

; and �22 ¼ �
r11~m12eE1

: ðA:6Þ

Integration provides the displacement field in the form

u1ðx1; x2Þ ¼ �11ðx2Þx1;

u2ðx1; x2Þ ¼ �
3Mzx2½hð1� cÞ þ x2ð1þ

ffiffiffi
c
p Þ2�

2Et
1h3

em12 þ v0ðx1Þ;

ðA:7Þ
where �11ðx2Þ is given by Eq. (A.4). Since the shear strains
must be zero, we find that

v0ðx1Þ ¼ �
3ð1þ ffiffiffi

c
p Þ2Mz

Et
1h3

x2
1

2
þ v1ðx1Þ; ðA:8Þ

and, in order to have continuity of the displacement at the
neutral axis, we get

v1ðx1Þ ¼
3Mzð�1þ ffiffiffi

c
p Þ2ðmt

12 � mc
12Þ

8cEc
1h

Hð��11ðx2ÞÞ: ðA:9Þ

The displacement components of the neutral axis are
given by

u1 ¼ 0

u2 ¼
3M ½�4ð1þ ffiffiffi

c
p Þ2x2

1 þ ð�1þ ffiffiffi
c
p Þ2h2mt

12�
8Et

1h3
; ðA:10Þ

so that the elastica is given by

@2u2

@x2
1

¼ � 3Mð1þ ffiffiffi
c
p Þ2

Et
1h3

: ðA:11Þ

For a simply-supported beam of span l loaded by two
concentrated loads P per unit thickness (plane strain
four-point bending), integration of the elastica yields
(neglecting shear deformation) Eq. (32) and thus Eq. (33).

For a simply-supported beam of span l loaded by a cen-
tral concentrated load P per unit thickness (plane strain
three-point bending), integration of the elastica yields
(neglecting shear deformation)
u2ðx1Þ ¼
ð1þ

ffiffiffi
c
p
Þ2Px1ð3l2 � 4x2

1Þ
16Et

1h3
: ðA:12Þ

Since our material has a low shear modulus G12, it may
be important to evaluate the contribution to the elastica of
shear deformability. To this purpose, we follow Jouraw-
ski’s analysis (which by the way originated to take into
account the high compliance of wood under shearing,
[25]), thus finding for the mean shear stresses in a bimodu-
lar (plane strain) beam

r12ðx2Þ ¼
3T

8h3c
f4h2c� ½ð

ffiffiffi
c
p
� 1Þh� 2ð

ffiffiffi
c
p
þ 1Þx2�2Hð�11ðx2ÞÞ

� cð
ffiffiffi
c
p
þ 1Þðh� 2x2Þ½ð

ffiffiffi
c
p
� 3Þh

� 2ð
ffiffiffi
c
p
þ 1Þx2�Hð��11ðx2ÞÞg; ðA:13Þ

where T is the shear force per unit thickness.
Equating the strain energies in the beam calculated from

external load and from internal stresses (or, in other words,
using Clapeyron’s theorem) we obtain for the shear
deformability

@u2

@x1

¼ 6T
5hG12

; ðA:14Þ

so that (within the usual approximations) shear deforma-
tion is unaffected by bimodularity.

Thus, accounting for shear deformation, integration of
the elastica gives Eqs. (30) and (31).
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