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Abstract

Incremental elastic deformations superimposed upon a given homogeneous strain are analyzed employing the

boundary element technique developed in Part I of this study. As a consequence of the fact that the formulation fully

embodies non-linear effects, the proposed approach yields bifurcation loads and associated deformation modes. In

particular, bifurcations of elastic structures are investigated, including cracked bodies and multilayers. As special cases

of instability not involving length scales, surface bifurcations and shear bands are analyzed and they are both found to

occur within the elliptic range, as induced by perturbations.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

In Part I of this study a boundary element formulation has been given, based on early work by Bigoni

and Capuani [11]. In particular, two-dimensional, incremental non-linear deformations are considered from

a given, homogeneously stressed configuration. Since the formulation fully embodies large strain effects, it

allows the determination of bifurcation loads and modes. A systematic investigation of these is the focus of

this second part, with emphasis on special situations including multilayered and cracked bodies. The results
may find broad applications and, in particular, numerical simulations are presented which may be useful in

the design of rubber bearings employed in earthquake-resistant design of buildings.

Two peculiar kinds of bifurcations are given special attention: corresponding to the so-called �surface
instability� and �shear banding�, the latter associated to the condition of loss of ellipticity. Both bifurcations
represent ill-posedness of the incremental problem and are characterized by the fact that the bifurcation

mode embodies an arbitrarily-short wave length. This gives rise to well-known difficulties in finite element
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simulations. However, while there is an immense literature on numerical investigation of shear bands,
numerical treatments of surface instability are scarce [4,27,54]. This is rather surprising, since both insta-

bilities are local and involve similar problems.

Many routes have been proposed to numerically regularize a problem beyond the elliptic range. In

particular, a class of approaches consists in modifying the constitutive models to include an intrinsic

characteristic length. Non-local constitutive models [5,33,44], Cosserat continua [16,35], visco-plastic

models [34,38], and higher-order gradient models [17,23,24,36,50,52,56] fall within this class. In another

class of approaches, numerical regularization is pursued by introducing ad hoc special interpolating

functions at element level [6,32,37,43], or by embedding strong discontinuities [2,3,15,39,49]. All the above-
mentioned approaches are based on finite element techniques, while the only analysis with the boundary

element method is quite recent [9]. This is again surprising, since BEM are known to be an efficient tool in

problems involving concentration of deformations, such as for instance in fracture mechanics [1,18].

It is clear from the above discussion that analysis of strain localization in solids has been a topic for years

in the numerical community. Nevertheless, the problem is far from being solved, so that while on one hand

commercial codes do not still incorporate features for automatic shear band analysis, on the other hand

many fundamental aspects––such as for instance propagation conditions at the shear band tip––still remain

almost completely unexplored.
A common denominator of the former class of the above-mentioned strategies is that they represent a

restoration of ellipticity of governing equations [7,8]. In contrast to this general situation, two different

approaches were recently initiated by Petryk and Thermann [41,42] and Bigoni and Capuani [11], char-

acterized by the fact that, for completely different reasons, the restoration of ellipticity is avoided. In the

former approach, devoted to incrementally non-linear materials, path-stability criterion [40] is sufficient to

determine the volume fraction and thus the overall behaviour of material elements in a post-critical range.

In the latter approach, strain localization is analyzed in the proximity of the ellipticity boundary, as induced

by a perturbation, still inside the region of ellipticity. As a result of perturbation, introducing in a sense a
length scale, localized deformation patterns emerge. For instance, Bigoni and Capuani [11] have shown that

localized deformations may be observed in a Mooney–Rivlin material, which is known to remain within the

elliptic range. A goal of the present study is to continue the investigation by extending the approach to

boundary value problems and employing the boundary element technique developed in Part I of this article.

Obviously, special numerical strategies are completely avoided since the analysis is performed within the

elliptic range. Results demonstrate that the boundary element technique is particularly suitable to the

analysis of surface instability and shear band formation.

2. Bifurcation of elastic structures

A Fortran 95 code with dynamic allocation of memory has been implemented to develop applications of

the boundary element technique presented in Part I. Integrals are computed numerically, using Gaussian

quadrature formulae with 12 integration points for Green�s functions (see Part I) and 18 points for integrals
in the discretized boundary integral equation (see Part I), unless otherwise specified. Several examples––

considering small strains superimposed upon homogeneous, arbitrarily large deformations––are provided
below demonstrating the capabilities of the method.

2.1. Elastic block

An elastic block is considered, in a square (the edge length of the block has been taken equal to 2b),
stressed current configuration, for a Mooney–Rivlin material. A uniaxial state of stress is prescribed in

terms of the non-dimensional parameter k defined as
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k ¼ r
2l

¼ r1 � r2

2l
¼ k21 � k22

k21 þ k22
; ð1Þ

where r1 (assumed zero in the following) and r2 are the principal Cauchy stresses––so that r is the current

deviatoric, in-plane stress––l is the incremental modulus for shear parallel to the principal Eulerian axes

and k1, k2 are the in-plane stretches. Bifurcations from this state were analyzed by Biot [14], Hill and

Hutchinson [25] and Young [57], considering a smooth bilateral constraint at the two edges normal to the

direction of the uniaxial stress. For Mooney–Rivlin material, bifurcations are only possible in compression,

where it turns out that the first bifurcation occurs at k � 0:522, corresponding to an antisymmetric mode

with a ratio k=ð2bÞ ¼ 2 between wave length k and edge length. Above this bifurcation value, an infinite set
of critical values of k follows, corresponding to antisymmetric bifurcations. The accumulation point of
these values defines the surface instability, occurring at k � 0:839, solution, with reversed sign, of the

equation (see [45], their Eq. (3.16) with n ¼ 1)

k
2

1

 
�

ffiffiffiffiffiffiffiffiffiffiffi
1� k
1þ k

r !
� 1 ¼ 0 ð2Þ

and corresponding to the limit k=ð2bÞ ¼ 0. For values of k greater than the surface instability threshold, an
infinite set of symmetric bifurcation becomes possible, bounded by k � 0:926 for k=2b ¼ 2=3, 1 which is the
highest value of k corresponding to a bifurcation obtained as a linear combination of wave modes

vl ¼ ale
ij ffiffifficjp x1þx2ð Þ; _pp ¼ ceij

ffiffifficjp x1þx2ð Þ; ð3Þ
where vl is the velocity, _pp is the in-plane pressure rate, i ¼

ffiffiffiffiffiffiffi
�1

p
, al and c are complex amplitudes, cj

ðj ¼ 1; 2Þ are the roots of the characteristic equation (see Part I) and j is the wave number of the bifurcation

mode. Therefore, the surface instability �separates� the two infinite sets of antisymmetric and symmetric

bifurcation modes. Some critical values of k and the corresponding modal wavelength k=2b are reported in
the second and third column of Table 1.

For the above described geometry, bifurcation points can be numerically traced by analyzing the

eigenvalue problem associated to the boundary element discretization. In our case, two uniform meshes of
72 and 144 elements (denoted as �coarse� and �fine� in the following) have been chosen. The upper and lower
edges of the block have been constrained with smooth rigid boundaries (the lower central node has been

fixed to eliminate possibility of rigid body translations) and the determinant of the solving system has been

analyzed at different values of pre-stress k. The results are reported in the fourth and fifth column of Table

1. We note that while the initial and final critical values k are computed with an excellent accuracy, values

getting close to the accumulation point can be hardly detected numerically.

However, bifurcations can also be analyzed using a perturbation technique. In particular, we may start

from the above geometry, with the velocities prescribed to be zero along the lower edge. In this situation we
may assign symmetric or antisymmetric perturbations in terms of dead loading along the free edges. It may

be anticipated that the symmetry of the perturbation will trigger a correspondingly symmetric bifurcation

mode. Let us analyze the two kinds of perturbations in detail.

2.1.1. Antisymmetric perturbation and Euler-type instability

As is shown in Fig. 1, the lateral faces of the block, initially free, are subsequently subject to pertur-

bations, in terms of antisymmetric, normal incremental dead-load. Referring to a Mooney–Rivlin material

1 There is a systematic misprint in the discussion of the example in Section 6.1 of [11]. All the values k=2b should be read there as

2b=k.
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and to the coarse and fine meshes already employed, the portion of the edges subject to incremental load
has been taken equal to 1/9 of the total edge length. The results of numerical investigation are reported in

Figs. 1 and 2. The velocity vc at the upper point of the right edge (non-dimensionalized as lvc=ðb _ssÞ, where b
is the half-length of the edge and _ss is the applied nominal traction rate) is plotted versus the pre-stress k in
Fig. 1, where the computed values are marked for k ¼ f�0:8;�0:6;�0:4;�0:2; 0; 0:2; 0:4; 0:45; 0:5; 0:5125g.
The profiles of velocity components (multiplied by l=ðb _ssÞ) along the vertical edge are shown in Fig. 2 for

different values of k. Comparisons are included with results obtained using ABAQUS-Standard (Ver. 6-2-

Hibbitt, Karlsson & Sorensen Inc.), with plane-strain, 4-nodes bilinear, hybrid elements (CPE4H).

-0.8 -0.4 0 0.4

0

4

8

12

k

BEM Coarse Mesh
BEM Fine Mesh
ABAQUS

cv
bτ
µ

13.1

12.2

10.2

0.53

pre-stress

b

b

x1

x2

τ. τ.
c

Fig. 1. Non-dimensionalized velocity of the corner point c versus pre-stress k.

Table 1

Bifurcation pre-stress k and relative mode for a square elastic, Mooney–Rivlin block

Analytical Numerical

Mode k=2b k k for fine mesh k for coarse mesh

Anti 2 0.522 0.522 0.523

Anti 1 0.732 0.733 0.735

Anti 2/3 0.796 0.797 0.802

Anti 1/2 0.821 0.824 0.832

Anti 2/5 0.832 0.836 –

Anti 1/3 0.836 – –

Anti 2/7 0.838 – –

Anti – – – –

– 0 0.839 – –

Sym – – – –

Sym 2/7 0.841 – –

Sym 1/3 0.843 0.849 –

Sym 2/5 0.849 0.854 0.869

Sym 1/2 0.866 0.867 0.880

Sym 2/3 0.926 0.930 0.939
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An analysis of Fig. 1 reveals that stiffness in the incremental response varies significantly as a function of

the pre-stress. In particular, traction (corresponding to negative values of k) increases stiffness, whereas
compression (corresponding to positive values of k) induces stiffness degradation. The latter becomes

dramatic when a critical value of k is reached. This is found to range between 0.5336 and 0.5344 (at which

value the stiffness becomes negative) for the coarse mesh, between 0.5289 and 0.5297 for the fine mesh and

between 0.5281 and 0.5289 for Finite Element analysis. Though relative to a slightly different boundary

condition at the lower edge, this result agrees with the bifurcation analysis (Table 1).
Profiles of velocities components along the edge are shown in Fig. 2 for k ¼ f�0:4; 0; 0:4; 0:5125g. Re-

sults of ABAQUS are in excellent agreement with those obtained with our boundary element technique up

to k ¼ 0:4; in the case when k ¼ 0:5125 the qualitative behaviour is still well captured.

Incremental displacement fields are reported in Fig. 3, where we note that the qualitative deformations

are similar, but the quantitative incremental displacements tend to blow up, when the bifurcation point is

approached. We can also note that the bifurcation mode is similar to a Euler-type deformation, corre-

sponding to a beam restrained to rotate at the edges.

Fig. 2. Velocity profiles along the vertical edge, for the geometry specified in the detail of Fig. 1.
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Internal fields can be obtained using boundary integral equations for the velocity and for the in-plane

pressure rate (see Part I). In particular, results obtained employing a discretized version of the boundary

integral equation for pressure rate (see Part I) are reported in Fig. 4, showing the in-plane pressure rate field

(normalized through division by l) at inner points, with coordinates x1=b ¼ f�0:75;�0:25; 0; 0:25; 0:75g

k = -.400 k = 0.0 k = .5125k = .400

Fig. 3. Qualitative deformations at different values of pre-stress k, for antisymmetric perturbation. The geometry is specified in the

detail of Fig. 1.

Fig. 4. Values of internal in-plane pressure rate at different values of pre-stress k, for the geometry specified in the detail of Fig. 1.

Comparison with results obtained with ABAQUS is also reported.
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and x2=b ¼ f�0:75;�0:25; 0; 0:25; 0:75g. The points having the same co-ordinate x2 are connected by lines.
Four levels of pre-stress k ¼ f�0:4; 0; 0:4; 0:5125g have been considered and the results are compared to

those calculated using ABAQUS with constant pressure elements. The fair agreement of the results rep-

resents the first numerical validation of the boundary equation for in-plane pressure rate obtained by

Bigoni and Capuani [11].

2.1.2. Symmetric perturbation and surface instability

Let us consider now the symmetric perturbation sketched in Fig. 5, considering the same setting of the

previous, antisymmetric situation. The velocity of the middle point of the edge versus the pre-stress k
is reported in Fig. 5. It is clear from the figure that the finer is the mesh, the closest is the zero-stiffness

asymptote to the surface instability, k ¼ 0:839. The wavy deformation mode associated to a localized

surface bifurcation is made visible in Fig. 6, where incremental displacement fields are reported. Differently

from the antisymmetric situation (Fig. 1) we may note here that the deformation mode changes qualita-
tively, in the sense that waviness increases when the bifurcation is approached. In particular, three wave-

lengths are visible in Fig. 6 when the surface instability is approached. For a finer mesh of 36
 144 elements

the surface instability is approached at k ¼ 0:842 and the qualitative deformation shown in Fig. 7 displays

nine wavelengths.
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Fig. 5. Non-dimensionalized velocity of the middle point c versus pre-stress k.

k = -.800 k = 0.0 k = .8406k = .800

Fig. 6. Qualitative deformations at different values of pre-stress k, for symmetric perturbation. The geometry is specified in the detail of
Fig. 5.
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2.2. Layered elastic material

The layered elastic structure sketched in the detail of Fig. 8 is now considered. The structure is made up

of three layers, with a �material 1� common to the outer layers and a different �material 2� forming the core.

Three cases are considered for the ratios of incremental shear moduli ðl�=lÞ1, ðl�=lÞ2 and l1=l2 of the two

materials and relevant values are reported in Table 2. All layers are specified to undergo the same homo-

geneous, plane strain deformation with the principal directions of deformation aligned normal and parallel

to the layers, as considered in [12,13]. Therefore, a uniaxial state of traction or compression prevails in the
laminate. Starting from this pre-stressed state, an incremental, antisymmetric loading _ss is prescribed (or-

thogonal to the external vertical edges of the structure) applied on a loading zone equal to 2b=15, with b
denoting the half-length of the laminate edge (see the detail in Fig. 8). Calculations have been performed

with a uniform mesh of 80 elements for each layer and results are reported in Fig. 8, where the velocity

(normalized through multiplication by l1=ðb _ssÞ) is plotted versus the pre-stress k. It should be noted that the
values of k are independent of the material, since they depend only on the in-plane stretch (1), identical in

Fig. 7. Qualitative deformation near to surface instability.
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Fig. 8. Non-dimensionalized velocity of the corner point c versus pre-stress k for an elastic laminate.
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all layers. The bifurcation values of k, obtained by the boundary element method, are also reported in Table

2, where they are compared with the analytical values given by Bigoni and Gei [12], under the slightly

different boundary condition of smooth rigid contact in the lower edge.

2.3. Cracked elastic blocks

A pre-stressed, rectangular (3b
 2b) elastic block is considered, containing cracks parallel to the free

edges. Three cracked configurations are chosen as sketched in the particular of Fig. 9 and the response to a

symmetric perturbation is analyzed at different levels of pre-stress k. The perturbation consists of a uniform
nominal loading rate along the entire lateral edges which are free until the instant of the perturbation,

inducing Mode I near-tip fields. For this situation, no analytical solutions are available, with the exception
of the asymptotic near-tip representation obtained in [45]. The incremental displacements at a characteristic

Table 2

Bifurcation stress k for the layered elastic structure

Case Shear modulus ratios Bifurcation stress k

ðl�=lÞ1 ðl�=lÞ2 l1=l2 Analyticala Numerical

1 1.0 0.5 0.5 0.4722 0.4852–0.4859

2 2/3 1.0 1.5 0.4386 0.4469–0.4477

3 0.5 1.0 2.0 0.3714 0.3789–0.3797

a The analytical results refer to slightly different boundary conditions than those employed for the numerical analysis.
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point of each cracked geometry are plotted in Fig. 9, where the asymptotes correspond to the first bifur-

cation value k ¼ f0:112; 0:150; 0:397g. The deformed configurations of the cracked bodies, for values of k
close to bifurcation are illustrated in Fig. 10. In the analysis the unilateral contact of the crack faces has

been taken into account. A peculiar effect is visible in the geometry II of Fig. 10, where the upper crack

remains closed, due to the high value of k. Analyses not reported here have shown that the same crack

opens for values of k6 0:0625.

2.4. An application to rubber bearings

Steel-laminated elastomeric bearings are structural elements widely used in bridges and in buildings as

seismic isolators [31]. These are made up of alternate steel and rubber laminates, bonded together. The

presence of steel layers increases the vertical stiffness, while the rubber layers permit large shear defor-

mations. The design of bearings is strongly conditioned by stability considerations, so that bridge speci-

fications usually limit their height-to-width ratio. For the evaluation of stability of rubber bearings a
number of models at different levels of accuracy has been proposed [19,28,30,31,51,53].

As a practical application of the proposed boundary element formulation, we develop here a simple

model to evaluate the incremental, horizontal stiffness of elastomeric bearings as a function of the vertical

applied load. In particular, we assume a plane strain situation in which the vertical load produces a ho-

mogeneous deformation of the rubber layers corresponding to uniaxial compressive stress. Although this

assumption is generally violated due to the bonding between steel and rubber, we find reasonable pre-

dictions. As is shown in Fig. 11, we consider a rubber bearing––similar to that employed by [29] (their Fig.

2), but in plane strain––made up of three steel layers (thickness 3 mm) and two rubber layers (thickness 8
mm), with a total height h of 25 mm and we investigate two aspect ratios h=b ¼ 1=16 and h=b ¼ 1=8. The
rubber layers are Mooney–Rivlin materials, defined by the strain energy function

W ðI1; I2Þ ¼
l1

2
ðI1 � 3Þ � l2

4
ðI21 � I2 � 6Þ; ð4Þ

Fig. 10. Deformed configurations in proximity of bifurcation of the cracked elastic blocks.

Fig. 11. Geometry of the analyzed rubber bearings.
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with l1 ¼ 0:599 MPa and l2 ¼ �0:108 MPa. Horizontal stiffness has been obtained calculating the hori-

zontal displacement induced by a horizontal antisymmetric loading applied over the thickness of the upper
(steel) layer (Fig. 11). Results are reported in Fig. 12, where the horizontal stiffness (normalized with respect

to the maximum stiffness of the wider bearing Smax ¼ 5:403 MPa) versus applied vertical load (normalized

with respect to the maximum vertical load of the wider bearing Pmax ¼ 2:025
 106 N/m) are reported.

3. Shear bands within the elliptic range

Let us consider an incompressible body characterized by the constitutive equation introduced in Part I
and relating the material derivative of nominal stress to the velocity gradient as

_ttij ¼ Kijklvl;k þ _ppdij; vi;i ¼ 0; ð5Þ

where _pp is the in-plane pressure rate and Kijkl is the constitutive fourth-order tensor having the major

symmetry. It is well-known that shear bands represent an extreme form of material instability, corre-

sponding to failure of ellipticity

niKijhknhgk ¼ 0; subject to nkgk ¼ 0; ð6Þ

for at least one unit vector nk and non-null orthogonal vector gk. Condition (6) can be shown to yield the
classical regime classification (Appendix A).

In a continuous loading program, loss of ellipticity can occur after various bifurcation thresholds are

attained. For instance, in the examples presented in the previous section shear bands may only occur well

after the detected bifurcation points. As a consequence, shear banding must be analyzed when the structure

is in a post-critical range (a circumstance usually overlooked in the literature). This is not an easy task, since

in that case the current state is inhomogeneous. However, there is a special case where shear bands may

occur as the first possible bifurcation. This is the so-called �van Hove condition�, in which the solid is subject
to prescribed displacements over the entire boundary and the current state (deformation and stress) is
homogeneous [55]. More in detail, the incremental solution is unique––unless an arbitrary uniform pres-

sure––until the strong ellipticity condition holds

gjniKijhknhgk > 0; subject to nkgk ¼ 0; ð7Þ
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for all pair of orthogonal vectors nk and gk. However, it is clear from the definitions (6) and (7) that

strong ellipticity ) ellipticity

and that for K possessing the major symmetry, 2 the first failure of strong ellipticity in a continuous loading

program corresponds to failure of ellipticity and shear band formation. Therefore, we consider van Hove

conditions, assuming the geometric setting shown in Fig. 13, where a square elastic block is considered,

homogeneously deformed in a state of uniaxial tension or compression. Displacements are prescribed on
the entire boundary, so that the solution is known unless an arbitrary value of homogeneous pressure. We

assume l�=l ¼ 0:25, corresponding to the elliptic complex regime, and perturb this configuration pre-

scribing the triangular distributions of velocity sketched in Fig. 13. The perturbation is characterized by the

ratio of the maximum assigned velocity to the length of the application zone. This ratio has been assumed

equal to 9/20 and 9/40 on the left and right edge, respectively, of the block in Fig. 13. Results of com-

putations––in terms of level sets of the velocity modulus––are reported in Figs. 14 and 16, the former

relative to c=b ¼ 1=2, the latter to c=b ¼ 4=9.
Level sets of the modulus of the in-plane deviatoric stress increment (normalized through division by l)

j _rrjffiffiffi
2

p
l
¼ j _rr1 � _rr2jffiffiffi

2
p

l
ð8Þ

are also reported in Figs. 15 and 17 and referred to as �von Mises stress increment� in the following. It may
be interesting to note that the in-plane deviatoric stress increment coincides for the J2-deformation theory

of plasticity (see Part I) with the three-dimensional deviatoric stress increment

dev _rr ¼ _rr � tr _rr

3
I; ð9Þ

since the out-of-plane stress increment is equal to ð _rr1 þ _rr2Þ=2 for the J2-deformation theory.

A 144-element uniform mesh has been employed to discretize the boundary and a 324-point uniform grid

has been used to evaluate the interior velocity field. The Gauss points for the numerical integrations have

been increased to 48.

Three different situations are reported in the figures, corresponding to three different values of pre-stress

k ¼ f�0:859; 0; 0:859g. The values �0.859 are close to the boundary of loss of ellipticity, occurring at
k ¼ �0:866025. When the elliptic boundary is attained, shear bands become possible, inclined at an angle g
solution of the equation [25]

tan2 g ¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�=lð1� l�=lÞ

p
1� 2l�=l

; ð10Þ

which, in the special case of l�=l ¼ 0:25, gives a band inclination g ¼ 27:367�, with respect to the direction
of the maximum in-plane stress component.

It can be seen from Figs. 14 and 16 that when the elliptic boundary is approached, the velocity tends to

localize along well-defined shear band patterns. They highlight the inclinations of the discontinuity bands
formally possible only at the elliptic boundary.

The fact that strain localization can be observed within the elliptic range employing a perturbation

approach agrees with findings by Bigoni and Capuani [11]. On the other hand, it may provide an expla-

nation of the fact that shear banding is a preferred instability when compared to other diffuse bifurcations,

possible at loss of ellipticity under van Hove conditions [48].

2 The more general case in which the constitutive operator is not symmetric is treated in detail by Bigoni [10].
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The van Hove conditions are very peculiar and provide the maximum possible �confinement� to a material
sample. Referred to the case of compressible materials, Ryzhak has shown [46,47] that the van Hove

theorem can be extended to a less restrictive condition, that will be called �weak van Hove� in the following.
In particular, the material must be homogeneous and orthotropic, with orthotropy axes parallel and

orthogonal to the given loading direction. Instead of the usual prescription on displacement, now two
parallel edges can be in smooth (bilateral) contact with a rigid constraint (the lubricated ends employed by

Biot [14] to explain the so-called �internal instabilities�). This is the situation sketched in Fig. 18 which we

employ as a current configuration to be perturbed with two assigned, triangular velocity distributions. As in

Fig. 15. Van Hove conditions: level sets of von Mises stress increment at different values of pre-stress k (c=b ¼ 1=2 in Fig. 13).

Fig. 14. Van Hove conditions: level sets of velocity modulus at different values of pre-stress k (c=b ¼ 1=2 in Fig. 13).
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Fig. 13. Loading geometry in van Hove conditions.
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van Hove conditions, the current situation is again defined unless an arbitrary value of homogeneous

pressure. Level sets of the velocity are plotted in Figs. 19 and 21, for different values of pre-stress

Fig. 16. Van Hove conditions: level sets of velocity modulus at different values of pre-stress k (c=b ¼ 4=9 in Fig. 13).

Fig. 17. Van Hove conditions: level sets of von Mises stress increment at different values of pre-stress k (c=b ¼ 4=9 in Fig. 13).

Fig. 18. Loading geometries in weak van Hove conditions.
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Fig. 19. Weak van Hove conditions: level sets of velocity modulus at different values of pre-stress k (Fig. 18a).

Fig. 20. Weak van Hove conditions: level sets of von Mises stress increment at different values of pre-stress k (Fig. 18a).

Fig. 21. Weak van Hove conditions: level sets of velocity modulus at different values of pre-stress k (Fig. 18b).

M. Brun et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 2481–2499 2495



k ¼ f0; 0:7; 0:857g corresponding to compression parallel to x2. Level sets of the modulus of the in-plane
deviatoric stress increment (8) are reported in Figs. 20 and 22. A 216-elements, uniform mesh has been

employed for the boundary and 648 points for the evaluation at the internal points. Again, the Gauss points

have been increased to 48 for the evaluation of integrals. We may note that until k ¼ 0:7 there is no much

evidence of shear banding, but this becomes evident when the boundary of loss of ellipticity is approached

with k ¼ 0:857.
The examples ofFigs. 19–22 show that peculiar deformation patterns emerge, due to �reflection�of shear bands

at the boundary. This feature of localized deformation has been observed in different contexts (behaviour of

porous plasticmaterials [54], dynamics of visco-plastic solids, [20,21]) and could be exploited to explain pattern
formation in living tissues or in geological structures. In particular, the adaptative substructuring of trabecular

bone shown in [26] (their Fig. 4) displays similarities to the pattern of Fig. 21, whereas the deformation patterns

in granular media evidenced in [22] (their Fig. 4) exhibit a similarity to the pattern of Fig. 19.

The obtained patterns of deformation may also suggest a number of technological applications. For

instance, we may easily speculate that the highly strained regions could transmit signals in a very localized

way, so that the pre-stress may become a parameter controlling delay lines with special properties.

4. Conclusions

The boundary element technique proposed in Part I of this study has been employed to investigate bi-

furcation of elastic structures. Shear band formation has also been considered, for configurations pre-
strained in the vicinity to the elliptic boundary. Numerical treatment of such conditions reveals the

emergence of peculiar localized deformations which may explain certain mechanisms of pattern formation

in nature and may suggest innovative technological applications.
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Fig. 22. Weak van Hove conditions: level sets of von Mises stress increment at different values of pre-stress k (Fig. 18b).
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Appendix A. Failure of ellipticity and regime classification

In a two-dimensional setting, condition (6) can be rewritten as

gjniKijhknhgk ¼ 0; ðA:1Þ

with

fng ¼ fcos a; sin ag; fgg ¼ f� sin a; cos ag: ðA:2Þ

Assuming now

K1111 ¼ l� �
r
2
� p; K1122 ¼ �l�; K1112 ¼ K1121 ¼ 0;

K2211 ¼ �l�; K2222 ¼ l� þ
r
2
� p; K2212 ¼ K2221 ¼ 0;

K1212 ¼ l þ r
2
; K1221 ¼ K2112 ¼ l � p; K2121 ¼ l � r

2
;

ðA:3Þ

condition (A.2) yields the two equivalent equations

1� k þ ð2k � 4þ 4l�=lÞ cos2 a þ 4ð1� l�=lÞ cos4 a ¼ 0;

l sin4 a½ð1þ kÞ cot4 a þ 2ð2l�=l � 1Þ cot2 a þ 1� k� ¼ 0;
ðA:4Þ

the latter of which is the usual basis for the regime classification [11,25]. In particular, the absence of real

solutions defines the elliptic range, while two real solutions the parabolic, and four real solutions the

hyperbolic regime.
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