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equation is guaranteed by the moment balance at the fulcrum

P1aeq = P2

�
l̄ − aeq

�
, (219)

where P1 is the counterweight associated with the left arm of length aeq,
whereas P2 represents the weight (to be measured) linked with the right
arm of length l̄ − aeq (see also the scheme in Fig. 41). Therefore, also for
the unequal balance, once the values of the counterweight P1 and the total
length of the two rigid arms l̄ are fixed, after measuring the length aeq, the
value of unknown load P2 can be obtained from the linear equation (219).

Sensitivity analysis The concept of sensitivity associated to scales allows
to compare the precisions in weighing (Robens et al. (2014)). According to
DIN/ISO, sensitivity is defined as the response of a measuring instrument,
which may be an angle or a length, divided by the corresponding change in
the stimulus, that is in our case the weight to be evaluated. For the con-
sidered scale, the sensitivity S is defined as the ratio between the observed
variation of aeq and the corresponding variation of the measured weight P2

for a fixed value of the counterweight P1,

S =
∂aeq
∂P2

. (220)

For the steelyard, taking into account the equilibrium equation (219), the
sensitivity can be evaluated as

Ssteelyard =
P1 l̄

(P1 + P2)
2 , (221)

while the sensitivity S of the elastica arm scale can be evaluated only nu-
merically due to the non-linearity of the equilibrium equations (215) and
(213).

Comparison between the steelyard and the elastica arm scale A
comparison between the unequal arm balance and the elastica arm scale is
reported in Fig. 41, where the equilibrium length aeq as a function of the
unknown weight P2 is shown on the left, while the sensitivity S, representing
the tangent to the curve on the left, is shown on the right. From Fig. 41
(left), it can be noted that, while the steelyard can measure every value
of the weight P2, for the elastica arm scale there is a minimum value for
the weight P2 that can be measured, except in the case when the device
is in the horizontal position (α = 90◦). On the other hand, the sensitivity

76



In CISM Lecture Notes No. 562
“Extremely Deformable Structures” D. Bigoni

Ed. Springer, Wien–New York, 2015
ISBN 978-3-7091-1876-4 doi 10.1007/978-3-7091-1877-1

Figure 41. Comparison between the performances of a steelyard and of the elastica
arm scale for different inclinations α = {0◦; 30◦; 60◦; 90◦}: equilibrium length aeq (left)
and sensitivity S (right) are reported versus the weight to be measured P2. The values
of the counterweight P1 and the parameter B/l̄2 have been assumed fixed and equal to
the same values adopted in the experiments performed by Bosi et al. (2014).

analysis shows that the inclined elastica arm scale (α 6= 0) can measure
weights with a precision higher than that observed with the steelyard. In
fact, once P2 is fixed, the sensitivity S increases at increasing inclination
towards the vertical configuration (α = 0◦), where possible effects due to
friction are also considerably reduced.

Comparison between different elastica arm scales Finally, a com-
parison between elastica arm scales with two different values for B/l̄2 each
with different inclinations α is shown in Fig. 42. The figure shows that a
decrease (increase) in the parameter B/l̄2 leads to an increase (decrease) in
both the range of measured weights P2 and of sensitivity S. Therefore, a
more accurate device can be realized either by reducing the rod’s bending
stiffness (at fixed length l̄) or by increasing the length l̄ (at fixed bending
stiffness B).

A proof-of-concept device showing how the elastica arm balance works
was realized by Bosi et al. (2014), movies of the experiments can be found
at http://ssmg.unitn.it/elasticscale.html.

7.3 A perspective view on configurational forces

Configurational or Eshelby-like forces emerge in a mechanical system
when the possibility arises of a change in configuration with a consequent
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Figure 42. Comparison between two elastica arm scales differing in the parameter
B/l̄2 for two different inclinations α = {30◦; 60◦}: equilibrium length aeq (left) and
sensitivity S (right) are reported versus the weight to be measured P2.

release of elastic energy. These forces are therefore more widespread than
the few simple structural examples shown above. For instance, configura-
tional forces have been revealed under torsion (Bigoni et al., 2014c) and
the same forces are responsible for snake locomotion; in fact the sliding
sleeve used in the above structural systems can be viewed as a frictionless,
narrow channel in which an elastic rod can move. Our results show that
motion along this channel can be induced even when the applied forces are
orthogonal to it, which is the essence of the locomotion strategy employed
by a snake, which exploits lateral friction to generate a constraint (similar
to the channel) and releases bending energy to generate a propulsive force,
see Gray (1974), Gray and Lissmann (1950) and Gray (1953).

8 A concluding remark

The study of the Euler’s planar elastica is useful from many points of view:
it represents a nice introduction to the complex behaviour of nonlinear me-
chanical systems and provides an important tool in the design of flexible
mechanisms such as in the emergent field of soft robotics. Indeed, we have
used this tool to create elastic structures capable of displaying new mechan-
ical behaviour, such as tensile instability, configurational forces, restabiliza-
tion of the trivial path, and an innovative measuring device.

In a world where machines drive blind researchers along unknown and
often false directions, our structures have been sketched on a piece of pa-
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per and solved usually by hand calculations, sometimes with the help of
a numerical solver, before the development of experiments. The solutions
have guided the design of prototypes capable of giving evidence to phenom-
ena first discovered with the ‘paper solution’. The evidence was usually
so closely following predictions that we found our experiments loving our
theory.
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