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Abstract

An infinite class of nonuniform antiplane shear fields is considered for a linear elastic isotropic
space and (non-intersecting) isotoxal star-shaped polygonal voids and rigid inclusions per-
turbing these fields are solved. Through the use of the complex potential technique together
with the generalized binomial and the multinomial theorems, full-field closed-form solutions
are obtained in the conformal plane. The particular (and important) cases of star-shaped
cracks and rigid-line inclusions (stiffeners) are also derived. Except for special cases (ad-
dressed in Part II), the obtained solutions show singularities at the inclusion corners and
at the crack and stiffener ends, where the stress blows-up to infinity, and is therefore detri-
mental to strength. It is for this reason that the closed-form determination of the stress
field near a sharp inclusion or void is crucial for the design of ultra-resistant composites.

Keywords: v-notch, star-shaped crack, stress singularity, stress annihilation, invisibility,
conformal mapping, complex variable method.

1 Introduction

The investigation of the perturbation induced by an inclusion (a void, or a crack, or a stiff
insert) in an ambient stress field loading a linear elastic infinite space is a fundamental problem
in solid mechanics, whose importance need not be emphasized. Usually this problem is analyzed
with respect to uniform ambient stress fields [1, 5, 8, 13, 23, 25], although inhomogeneous,
self-equilibrated stresses have also been considered [4, 6, 12, 32, 34, 39, 40]. The interplay
between stress inhomogeneities and singularities generated at inclusion corners is important in
the design of ultra-resistant composites, as stress singularities are known to be detrimental to
strength. In fact, an extreme stress concentration, leading to material failure, has been shown
by experiments to represent the counterpart of the mathematical concept of singularity [19, 20].
The determination of the conditions leading to stress relief around inclusions may introduce
new perspectives in the development of composite materials.

The present article addresses the analytical, closed-form solution of isotoxal star-shaped
polygonal voids and rigid inclusions in an elastic isotropic matrix loaded by inhomogeneous
(but self-equilibrated) antiplane shear fields (which are introduced as polynomial in an explicit
mechanical setting). The solution is obtained using the complex potential technique, with
conformal mapping [23, 24, 25], which leads to a full-field determination of the stress field. The
particular cases of infinitely thin star corners are also addressed, corresponding to star-shaped
cracks and stiffeners (the latter also referred to as rigid-line inclusions). These patterns of
multiple cracks are quite common, as three and four point star-shaped cracks are induced by
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triangular and Vickers pyramidal indenters [7, 9, 10] and can emerge during drying of colloidal
suspensions in capillary tubes [14, 18]. Multiple radial crack patterns are generated after low
speed impacts1 on brittle plates [38]. In Section 3, using the multinomial (and the generalized
binomial) theorem, the full-field closed-form solutions for isotoxal star-shaped polygonal voids
and rigid inclusions (and for star-shaped cracks and stiffeners) perturbing an inhomogeneous
antiplane shear field are obtained, after the problem is posed and solved in its asymptotic
form in Section 2. These results open the way to issues related to inclusion neutrality and
in particular allows the discovery of ‘quasi-static invisibility’ and ‘stress annihilations’, whose
treatment is deferred to Part II of this study [2], together with considerations of irregularities
in the shape of the inclusions and the finiteness of the domain containing the inclusion.

The presented results, obtained in out-of-plane elasticity, provide also a solution for problems
in thermal conductivity and electrostatics, due to the common governing equations expressed
by the Laplacian.

2 Governing equations, polynomial far-field stress, and asymp-

totics

When anti-plane strain conditions prevail in a linear elastic solid, the gradient of the only non-
vanishing displacement component, orthogonal to the x1–x2 plane and denoted by w(x1, x2),
defines the shear stress components (through the shear modulus µ) as

τ13(x1, x2) = µ
∂w(x1, x2)

∂x1
, τ23(x1, x2) = µ

∂w(x1, x2)

∂x2
, (1)

which are requested to satisfy the equilibrium equation in the absence of body forces,

∂τ13(x1, x2)

∂x1
+

∂τ23(x1, x2)

∂x2
= 0. (2)

In addition to the equilibrium equations, compatibility (or, in other words, the Schwarz theorem
for function w) requires

∂τ13(x1, x2)

∂x2
− ∂τ23(x1, x2)

∂x1
= 0. (3)

Note that for the antiplane problem, one eigenvalue of the stress tensor is null and the other
two have opposite signs. The absolute value of the two non-null eigenvalues is

τ =

√

(τ13)
2 + (τ23)

2. (4)

2.1 An infinite class of antiplane shear fields

A class of remote anti-plane loadings is considered for an infinite elastic solid containing an
inclusion, as defined by the following polynomial stress field of m-th order (m ∈ N)

τ
∞(m)
13 (x1, x2) =

m
∑

j=0

b
(m)
j xm−j

1 xj2, τ
∞(m)
23 (x1, x2) =

m
∑

j=0

c
(m)
j xm−j

1 xj2, (5)

1High speed generates circumferential fractures in addition to radial.
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where b
(m)
j and c

(m)
j are constants (j = 0, ...,m). Because the polynomial stress field (5) has to

satisfy both the equilibrium equation (2) and the compatibility equation (3), all the constants

b
(m)
j and c

(m)
j are linearly dependent on b

(m)
0 and c

(m)
0 as follows

b
(m)
j = (−1)

j

2
m!

j! (m− j)!
b
(m)
0 , c

(m)
j = (−1)

j

2
m!

j! (m− j)!
c
(m)
0 , ∀ even j ∈ [0;m],

b
(m)
j = (−1)

j−1
2

m!

j! (m− j)!
c
(m)
0 , c

(m)
j = (−1)

j+1
2

m!

j! (m− j)!
b
(m)
0 , ∀ odd j ∈ [0;m].

(6)

Note that the constants b
(m)
0 and c

(m)
0 represent a measure of the remote (or, in the inclusion

problem, the ‘unperturbed’) stress state along the x1 axis,

τ
∞(m)
13 (x1, 0) = b

(m)
0 xm1 , τ

∞(m)
23 (x1, 0) = c

(m)
0 xm1 , (7)

so that b
(0)
0 and c

(0)
0 are the loading constants defining the usual uniform Mode III, Fig. 1

(upper part),

τ
∞(0)
13 (x1, 0) = b

(0)
0 , τ

∞(0)
23 (x1, 0) = c

(0)
0 . (8)

With the only exception of the case m = 0, the two remote shear stress components are affected

by both constants b
(m)
0 and c

(m)
0 . For example, in the case of linear remote loading (m=1), Fig.

1 (lower part), the remote field is defined by

τ
∞(1)
13 (x1, x2) = b

(1)
0 x1 + c

(1)
0 x2, τ

∞(1)
23 (x1, x2) = c

(1)
0 x1 − b

(1)
0 x2. (9)

Note that the introduced polynomial fields can be used to reconstruct through series a general
self-equilibrated remote loading. Therefore, due to the superposition principle, the solution
obtained in the next sections also describes the mechanical fields under general Mode III remote
loadings.

It is instrumental to express the polynomial stress field (5) in two further reference systems,
one Cartesian and the other polar. In particular, with reference to a x̂1–x̂2 Cartesian coordinate
system obtained through a rotation of an angle γ of a x1–x2 system, the polynomial stress field
can be expressed as

τ̂
∞(m)
13 (x̂1, x̂2) =

m
∑

j=0

b̂
(m)
j x̂m−j

1 x̂j2, τ̂
∞(m)
23 (x̂1, x̂2) =

m
∑

j=0

ĉ
(m)
j x̂m−j

1 x̂j2, (10)

where the loading constants b̂
(m)
0 and ĉ

(m)
0 are linearly dependent on the constants b

(m)
0 and c

(m)
0

as follows
b̂
(m)
0 = b

(m)
0 cos((m+ 1)γ) + c

(m)
0 sin((m+ 1)γ),

ĉ
(m)
0 = c

(m)
0 cos((m+ 1)γ)− b

(m)
0 sin((m+ 1)γ).

(11)

With reference to a polar coordinate system (r, θ) centered at the origin of the x1–x2 axes, the
polynomial stress field (5) can be rewritten as















τ
∞(m)
r3 (r, θ) = rm

[

b
(m)
0 cos ((m+ 1)θ) + c

(m)
0 sin ((m+ 1)θ)

]

,

τ
∞(m)
θ3 (r, θ) = rm

[

c
(m)
0 cos ((m+ 1)θ)− b

(m)
0 sin ((m+ 1)θ)

]

,

(12)
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Figure 1: The cases of uniform (m = 0, upper part) and linear (m = 1, lower part) remote (self-equilibrated)

loading conditions described by the constant b
(m)
0 (left) and c

(m)
0 (right), eqn (5).

corresponding to the displacement

w∞(m)(r, θ) =
rm+1

µ(m+ 1)

[

b
(m)
0 cos ((m+ 1)θ) + c

(m)
0 sin ((m+ 1)θ)

]

. (13)

Finally, it can be noted that the modulus of the principal stress (4) is independent of the
circumferential angle θ

τ∞(m)(r) = rm
√

[

b
(m)
0

]2
+
[

c
(m)
0

]2
, (14)

so that the level sets of the modulus of the (unperturbed) shear stress are concentric circles
centered at the origin of the axes.

2.2 Asymptotic expansion near the vertex of a void or a rigid inclusion

A vertex of a void or a rigid inclusion is considered (defined by the semi-angle α exterior to
the inclusion, Fig. 2, right), with reference to a polar coordinate system (ρ, ϑ) centered at the
inclusion corner, where ϑ ∈ (−α, α) measures the angle from the symmetry axis. Following
[27]–[31], the solution of the general out-of-plane problem can be decomposed in its symmetric
wS(ρ, ϑ) = wS(ρ,−ϑ) and antisymmetric wA(ρ, ϑ) = −wA(ρ,−ϑ) terms,

w(ρ, ϑ) = wS(ρ, ϑ) + wA(ρ, ϑ), (15)

which, considering equations (1)–(3), assume the following expressions in polar coordinates,

wS(ρ, ϑ) = DSρ1+λS
cos
[(

1 + λS
)

ϑ
]

,

wA(ρ, ϑ) = DAρ1+λA
sin
[(

1 + λA
)

ϑ
]

,

(16)
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and, through the isotropic elastic constitutive relation (1), the following stress field representa-
tions are obtained as

τSρ3(ρ, ϑ) = µDS (1 + λS)ρλ
S
cos
[

(1 + λS)ϑ
]

,

τSϑ3(ρ, ϑ) = −µDS (1 + λS)ρλ
S
sin
[

(1 + λS)ϑ
]

,

τAρ3(ρ, ϑ) = µDA (1 + λA)ρλ
A
sin
[

(1 + λA)ϑ
]

,

τAϑ3(ρ, ϑ) = µDA (1 + λA)ρλ
A
cos
[

(1 + λA)ϑ
]

,

(17)

where DS and DA are constants (to be defined in relation to the remote loading), while λS

and λA are the eigenvalues of the characteristic equations for the symmetric and antisymmetric
problem, respectively, with {λS, λA} > −1, to satisfy the requirement of finiteness of the local
elastic strain energy. These eigenvalues can be defined through the boundary condition imposed
at the inclusion boundary and are crucial to the asymptotic description of stress fields around
the inclusion vertex.

The apexes ✩ and ★ will be used to distinguish between values assigned to voids and to rigid
inclusions, respectively. The null traction or null displacement boundary conditions at θ = ±α,
holding respectively for the former and the latter problem, can be expressed as [36]

τ✩

θ3(ρ,±α) = 0, w★(ρ,±α) = 0, (18)

leading to the following characteristic equations

sin
[

α
(

1 + λ✩S
)]

= 0, cos
[

α
(

1 + λ✩A
)]

= 0,

cos
[

α
(

1 + λ★S
)]

= 0, sin
[

α
(

1 + λ★A
)]

= 0,

j ∈ N, (19)

and from which two countably infinite set of eigenvalues λ✩A
j , λ★A

j , λ✩S
j and λ★S

j are obtained as



















λ✩S
j (α) = λ★A

j (α) = −1 +
jπ

α
,

λ✩A
j (α) = λ★S

j (α) = −1 +
(2j − 1)π

2α
,

j ∈ N. (20)

The mechanical fields at small distances from the inclusion are ruled by the leading-order term
in the symmetric and antisymmetric asymptotic expansions (16), which correspond to j = 1















λ✩S
1 (α) = λ★A

1 (α) = −1 +
π

α
≥ 0,

λ✩A
1 (α) = λ★S

1 (α) = −1 +
π

2α
≥ −1

2
,

(21)

and are reported in Fig. 2 (left) as a function of exterior semi-angle α. Note that the following
property holds true

λ✩S
1 (α) = λ★A

1 (α) > λ✩A
1 (α) = λ★S

1 (α). (22)

The range of variation of the values λ1 for different values of the exterior semi-angle α is
summarized in Tab. 1 and reported in Fig. 2 (left), from which it can be noted that the stress
field has:
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Figure 2: (left) First eigenvalue λ1, guiding the leading-order term in the asymptotic description of symmetric
and antisymmetric parts of mechanical fields (16) in the neighborhood of the inclusion vertex, as a function of
the semi-angle α exterior to the inclusion (right).

α ∈
(

0,
π

2

) π

2
∈
(π

2
, π
)

π

λ✩S
1 (α) = λ★A

1 (α) > 1 1 ∈ (0, 1) 0

λ✩A
1 (α) = λ★S

1 (α) > 0 0 ∈
(

−1

2
, 0

)

−1

2

Table 1: Ranges of the first eigenvalue λ1, defining the leading-order term in the description of symmetric and
antisymmetric parts of the displacement field w, eqn (16)1, for different ranges of exterior semi-angle α (Fig 2,
right).

• a singular leading-order term for antisymmetric notch/symmetric wedge problems when
α ∈ (π/2, π] (in particular a square-root singularity is attained for α = π, corresponding
to antisymmetric crack/symmetric stiffener problems);

• a constant (zeroth-order) term for antisymmetric notch/symmetric wedge problems when
α = π/2 and for symmetric notch/antisymmetric wedge problems when α = π. Such
a constant is usually called T-stress in in-plane and S-stress in out-of-plane [15, 21, 22]
crack problems;

• a non-singular leading-order term for symmetric notch/antisymmetric wedge problems
when α < π and for antisymmetric notch/symmetric wedge problems when α < π/2.

The above-listed observations are crucial for the understanding of the occurrence of stress
singularity or of stress annihilation at the vertices of polygonal void and rigid inclusions, as
shown in Part II.
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3 Full-field solution

The full-field solution for non-intersecting isotoxal star polygonal voids and rigid inclusions em-
bedded in an isotropic elastic material subject to the generalized anti-plane remote polynomial
stress field (5) is obtained through the complex potential technique generalizing the solution by
Kohno and Ishikawa [17]. Considering the constitutive relation (1), equilibrium in the absence
of body-forces (2) can be expressed in terms of the displacement field w as the Laplace equation

∇2w (x1, x2) = 0, (23)

so that, introducing a complex potential f(z), function of the complex variable z = x1 + ix2
(where i is the imaginary unit), such that

w =
1

µ
Re[f(z)], (24)

and, considering the Cauchy-Riemann conditions for analytic functions, the stress-potential
relationship can be written as

τ13 − iτ23 = f ′(z), (25)

so that the out-of-plane resultant shear force F ⌢

BC
along an arc

⌢

BC is

F ⌢

BC
=

∫ C

B

(τ13 dx2 − τ23 dx1) = Im [f(zC)− f(zB)] . (26)

The complex potential f(z) can be considered as the sum of the unperturbed potential f∞(z),
which is the solution in the absence of the inclusion, and the perturbed one, fp(z), introduced
to recover the boundary condition along the inclusion boundary,

f(z) = f∞(z) + fp(z). (27)

Using the polynomial description (5) for the self-equilibrated remote stress field τ
∞(m)
13 and

τ
∞(m)
23 , the unperturbed potential is given as

f∞(z,m) = T (m)zm+1 , (28)

where

T (m) =
b
(m)
0 − i c

(m)
0

m+ 1
, (29)

which in the particular case of uniform antiplane shear load, m = 0, reduces to [17] (their
equation (20)).

Considering now the presence of the inclusion, it is instrumental to define the conformal
mapping z = ω(ζ), which transforms the boundary of the inclusion in the physical plane into a
circle of unit radius within the conformal plane. In the conformal plane, the complex potential

g(ζ) = f(ω(ζ)), (30)

is introduced, so that equations (24), (25) and (26) become

w =
1

µ
Re[g(ζ)], τ13 − iτ23 =

g′(ζ)

ω′(ζ)
, F ⌢

BC
= Im [g(ζB)− g(ζC)] . (31)
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Figure 3: Infinite plane containing a n-pointed isotoxal star-shaped polygon inscribed in a circle of radius a.
The polygon is defined by the semi-angle ξπ at the isotoxal-points (z-plane) and is conformally mapped onto an
infinite plane with a circular inclusion of unit radius (ζ-plane) using the Schwarz-Christoffel formula (33). Note
the local reference systems z∗ = z − a and ζ∗ = ζ − 1 defined in the two planes.

The displacement and stress fields in the physical domain can be obtained once the inclusion
shape is specified.

Rigid inclusions and voids are considered of isotoxal polygonal star shape, see Fig. 3 (left),
embedded in infinite elastic matrix. An isotoxal polygonal star is defined by the number N of
vertices and a number n = N/2 of points. Note that N ≥ 4 is always even, while n ≥ 2 is an
integer, so that a polygon (for instance a triangle, characterized by N = 6 and n = 3) is viewed
as a degenerate star (for instance a three-pointed star, having N = 6 and n = 3). Introducing βj
as the fraction of the angle π measuring the j-th angle exterior to j-th vertex of the inclusion
(for instance an equilateral triangle has β1 = β3 = β5 = 5/3 and β0 = β2 = β4 = 1), the
following property holds true

2n−1
∑

j=0

βj = 2(n+ 1). (32)

With reference now to a isotoxal polygonal star inclusion defined by n points, the Schwarz-
Christoffel conformal mapping (see [37] and [33]) is used to map the exterior region of the
inclusion (within the physical z − plane) onto the exterior region of the unit circle (within the
conformal ζ − plane), namely

ω(ζ) = aΩ

∫ ζ

1





1

σ2

2n−1
∏

j=0

(σ − kj)
βj−1



 dσ, (33)

where a is the radius of the circle inscribing the inclusion, Ω is the scaling factor of the inclusion,
kj is the pre-image of the j-th polygon vertex in the ζ plane.

The first derivative of the conformal mapping (33) becomes

ω′(ζ) = aΩ
1

ζ2

2n−1
∏

j=0

(ζ − kj)
βj−1 . (34)

Further exploiting the identity (32), the first derivative of the conformal mapping (34) can be

8
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rewritten as

ω′(ζ) = aΩ

2n−1
∏

j=0

(

1− kj
ζ

)βj−1

. (35)

With reference to a n-pointed isotoxal star polygon, see Fig. 3, the pre-images and the
exterior angles βj appearing in equation (35) are respectively given by

kj = e
i
jπ

n and βj =







2(1− ξ) if j is even

2 (ξ + 1/n) if j is odd
j = 0, ..., 2n− 1, (36)

where ξ is the fraction of π of the semi-angle at the isotoxal-points, restricted to the following
set

ξ ∈
[

0,
1

2
− 1

n

]

, (37)

and that can be used to define the inclusion sharpness, starting from ξ = 0, which corresponds
to zero-thickness (infinite sharpness) inclusion, ending with ξ = 1/2 − 1/n corresponding to
n-sided regular polygonal case.

From the definition (36)1 of the pre-images kj (as the complex n-th roots of the positive
and negative unity), the following identities, which will become useful later, can be derived

n−1
∏

j=0

(ζ − k2j) = ζn − 1,

n
∏

j=1

(ζ − k2j−1) = ζn + 1, (38)

which can be written in an equivalent and useful form, for the future calculations, as given
below

n−1
∏

j=0

(

1− k2j
ζ

)

= 1− 1

ζn
,

n
∏

j=1

(

1− k2j−1

ζ

)

= 1 +
1

ζn
. (39)

The particular case of an n-pointed star polygon is identified through the Schläfli symbol |n/S|
involving the density, or starriness, S ∈ N1, which is subject to the constraint S < n/2, see
[16, 11]. Therefore, for star polygons, the following relation

ξ =
1

2
− S

n
, (40)

holds true, so that a regular n-sided polygon is recovered when S = 1, see equation (37). Now
S controls the sharpness, so that the higher is S, the sharper is the star, as shown in Fig. 4.
In the limit case ξ = 0 the star-shaped crack or stiffener is obtained (Fig. 5).

The generic conformal mapping (33) can be expressed through the following Laurent series
([25] and [24])

ω(ζ) = aΩ



ζ +
∞
∑

j=1

dj
ζj



 , (41)

where dj are complex constants depending on the inclusion shape.
In the following subsections, the conformal mappings for n-pointed star shaped cracks and

stiffeners (zero-thickness, ξ = 0) and isotoxal star polygonal voids or rigid inclusions (non-zero
thickness, ξ 6= 0) will be obtained as special cases of the Laurent series as

ω(ζ, ξ, n) = aΩ(n, ξ)
∞
∑

j=0

d1−jn(ξ) ζ
1−jn , (42)

9
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n
=5

n
=7

n
=9

S=1 S=2

S=3

S=4

Isotoxal star-shaped polygon

Figure 4: n-pointed isotoxal star-shaped polygons (n = {5, 7, 9}, from the upper part to the lower) inscribed
in a circle of radius a can be used to describe inclusions in the form of n-sided regular polygons and n-pointed
regular stars with density S (= {1, 2, 3, 4}, from left to right), within an infinite elastic plane. Note that, for a
fixed n, the density parameter S can vary only within a finite range of natural numbers S < n/2.

n=2 n=3 n=4 n=5

x
=0

Star-shaped crack or stiffener

Figure 5: n-pointed star-shaped cracks/stiffeners, obtained in the limit of ξ = 0 of isotoxal star-shaped polygons.
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where the scaling factor Ω(n, ξ) and the constants d1−jn(ξ) will be given specific expressions.
It is noteworthy that ‘jn’ denotes the multiplication j×n between the index j and the number
of points n.

3.1 Star-shaped crack and stiffener

An n-pointed star-shaped crack or a star-shaped stiffener can be obtained as the limit case of
a isotoxal star polygon with an inifinte sharpness i.e. ξ = 0, see Fig. 5.

Considering now a n-pointed regular star-shaped crack or rigid line inclusion and introducing
ξ = 0 in the definition (36)2, the first derivative of the conformal mapping (35), together with
equation (39), simplifies to

ω′(ζ, n) = aΩ(n)

(

1− 1

ζn

)(

1 +
1

ζn

)
2−n
n

, (43)

where Ω(n) is a function of the number n of star points given as

Ω(n) =
1
n
√
4

∈
[

1

2
, 1

)

, (44)

for which the lower bound is obtained for n = 2 (line inclusions, crack or stiffener) while the
upper bound corresponds to a circle, n → ∞.

From the integration of equation (43), the mapping function can be obtained as

ω(ζ, n) =
a
n
√
4
ζ

(

1 +
1

ζn

) 2
n

, (45)

which, using the generalized binomial theorem, can be expressed as

ω(ζ, n) =
a
n
√
4

∞
∑

j=0

[

j−1
∏

k=0

(

2

n
− k

)

]

ζ1−jn

j!
, (46)

namely, the Laurent series (42) with the complex coefficients d1−jn defined as

d1−jn =
1

j!

j−1
∏

k=0

(

2

n
− k

)

. (47)

In the special case of a simple crack or a rigid line inclusion (n = 2), equation (45), as well
as the Laurent series (46), reduces to the well-known conformal mapping function

ω(ζ) =
a

2

(

ζ +
1

ζ

)

. (48)

To derive the complex potential (30) for star-shaped cracks and stiffeners, it is instrumental
to introduce t and q, functions of m and n as

t =
2(m+ 1)

n
, q =

⌊

m+ 1

n

⌋

, (49)
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where the dependence on m and n is omitted for simplicity and the symbol ⌊·⌋ stands for the
integer part of the relevant argument. By means of the generalized binomial theorem, the
unperturbed potential can be expressed as

g∞(ζ, n,m) =
am+1 T (m)

2t

∞
∑

j=0

(

j−1
∏

l=0

t− l

)

ζm+1−jn

j!
. (50)

By imposing the null traction resultant condition F ⌢

BC
= 0 for a crack (χ = 1), or the

rigid-body displacement condition wB = wC for a rigid line inclusion (χ = −1), for every pairs
of points B and C along the boundary of the unit circle in the conformal plane, the perturbed
complex potential gp(m) is obtained as

(51)

gp(ζ, n,m) =
am+1

2t







χT (m)



−δm+1,qn

q!

q−1
∏

l=0

(t− l) +

q
∑

j=0

(

j−1
∏

l=0

t− l

)

1

j! ζm+1−jn





− T (m)
∞
∑

j=q+1

(

j−1
∏

l=0

t− l

)

1

j! ζjn−m−1







,

where δm+1,qn is Kronecker delta, so that ‘qn’ is a single index corresponding to the multipli-
cation q × n between the two indices q and n.

The complex potential follows from the sum of the perturbed and unperturbed potentials
as

(52)

g(ζ, n,m) =
am+1

2t







−χT (m)

q!
δm+1,qn

q−1
∏

l=0

(t− l)

+

q
∑

j=0

1

j!

(

j−1
∏

l=0

(t− l)

)[

T (m)ζm+1−jn +
χT (m)

ζm+1−jn

]







.

Note that in the particular case when t = 2(m + 1)/n ∈ N, the binomial theorem can be
exploited and the complex potentials (50), (51) and (52) reduce to

g∞(ζ, n,m) =
am+1 T (m)

2t

t
∑

j=0

t!

j! (t− j)!
ζm+1−nj ,

gp(ζ, n,m) =
am+1

(

χT (m) − T (m)
)

2t



− t!

q! q!
δm+1,qn +

q
∑

j=0

t!

j! (t− j)!

1

ζm+1−jn



 ,

g(ζ, n,m) =
am+1

2t



− t!

q! q!
χT (m) δm+1,qn +

q
∑

j=0

t!

j! (t− j)!

(

T (m)ζm+1−nj +
χT (m)

ζm+1−nj

)



 .

(53)
In addition to the particular case (53), the complex potential (52) also simplifies in some

other special cases, which are listed below.

• n > m+ 1 (corresponding to the case q = 0)

g(ζ, n,m) =
am+1

2t

[

T (m)ζm+1 +
χT (m)

ζm+1

]

, (54)

12



Published in International Journal of Solids and Structures 85-86 (2016), 67-75
doi: http://dx.doi.org/10.1016/j.ijsolstr.2016.01.027

a simple expression representing an infinite set of solutions, such as that for a cruciform
crack (n = 4, Fig. 5) subject to uniform, linear and quadratic remote antiplane shear
loads (m = 0, 1, 2);

• n = 2 (corresponding to the case of line stiffener or crack)

g(ζ, n,m) =
(m+ 1)! am+1

2m+1











−χT (m)

q! q!
δm+1,2q +

q
∑

j=0

T (m)ζm+1−2j +
χT (m)

ζm+1−2j

j! (m+ 1− j)!











; (55)

• m = 0 (corresponding to the case of uniform antiplane shear [35])

g(ζ, n) =
a
n
√
4

[

T (0)ζ +
χT (0)

ζ

]

, (56)

where the constant T (0) and its complex conjugate T (0) represent the remote uniform antiplane
shear loading given by the equation (29).

3.2 Isotoxal star-shaped polygonal voids and rigid inclusions

Exploiting equation (38), the first derivative of the conformal mapping (34) for an n-pointed
isotoxal star polygon (in the case of ξ 6= 0) is

ω′(ζ, ξ, n) = aΩ(n, ξ)
(ζn − 1)1−2ξ (ζn + 1)2(ξ+

1
n)−1

ζ2
, (57)

where the scaling factor Ω is given by

Ω(n, ξ) =
1
n
√
4

Γ
(

1− 1
n
− ξ
)

Γ
(

n−1
n

)

Γ (1− ξ)
∈
[

1

2
, 1

)

, (58)

with the symbol Γ(·) standing for Euler gamma function defined via the following convergent
improper integral

Γ(u) =

∫

∞

0
σu−1e−σdσ. (59)

Note that the lower value of Ω(n, ξ) in equation (58) is attained in the line inclusion case (n = 2
and ξ → 0), while the upper limit is given by circle limit n → ∞.

Integrating equation (57), it is possible to write the mapping function through Appell hy-
pergeometric function F1 [3], as

ω(ζ, ξ, n) = aΩ(n, ξ) ζ F1

(

− 1

n
; 2ξ − 1, 1− 2ξ − 2

n
; 1− 1

n
;
1

ζn
,− 1

ζn

)

, (60)

which, since |ζ| ≥ 1, becomes

ω(ζ, ξ, n) = aΩ(n, ξ)
∞
∑

v=0

∞
∑

u=0

(

− 1
n

)

u+v
(−1 + 2ξ)u

(

1− 2ξ − 2
n

)

v
(

1− 1
n

)

u+v
u! v!

(−1)vζ1−n(u+v), (61)
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where, for x ∈ R and j ∈ N, the symbol (x)j denotes the Pochhammer symbol expressed
through the Euler gamma function, as

(x)j =
Γ(x+ j)

Γ(x)
. (62)

Transforming the index u+ v of equation (61) into a single index leads to

ω(ζ, ξ, n) = aΩ(n, ξ)
∞
∑

j=0

j
∑

k=0

(−1)j−k

k! (j − k)!

Γ
(

1− 2
n
− 2ξ + j − k

)

Γ (−1 + 2ξ + k)

(1− jn) Γ
(

1− 2
n
− 2ξ

)

Γ (−1 + 2ξ)
ζ1−nj , (63)

which is the Laurent series (42) with the complex constants d1−jn(ξ) identified as

d1−jn(ξ) =
1

1− jn

j
∑

k=0

(−1)j−k

k! (j − k)!

Γ
(

1− 2
n
− 2ξ + j − k

)

Γ (−1 + 2ξ + k)

Γ
(

1− 2
n
− 2ξ

)

Γ (−1 + 2ξ)
. (64)

The conformal mapping (63) simplifies in the following particular cases of n-pointed isotoxal
star polygons.

• n-sided regular polygon (so that ξ = 1/2− 1/n, with n ≥ 2), for which the scaling factor
Ω and the constants d1−jn are

Ω(n) =

√
π

n
√
4 Γ

(

1
2 + 1

n

)

Γ
(

1− 1
n

) ∈
[

1

2
, 1

)

,

d1−jn =
Γ
(

j − 2
n

)

j! (1− jn)Γ
(

− 2
n

) ,

(65)

• n-pointed regular star polygon with density S = 2 (so that ξ = 1/2 − 2/n, with n ≥ 4;
for instance n = 5 corresponds to a non-intersecting five-point star), for which the scaling
factor Ω is

Ω(n) =
sin
(

π
n

)

π

Γ
(

2
n

)2

Γ
(

4
n

) ∈
[

1√
2
, 1

)

, (66)

and the coefficients d1−jn are

d1−jn =
1

1− jn

j
∑

k=0

(−1)j−k

k! (j − k)!

Γ
(

2
n
+ j − k

)

Γ
(

− 4
n
+ k
)

Γ
(

2
n

)

Γ
(

− 4
n

) . (67)

Considering the Laurent series of the mapping function (42) for the case ξ 6= 0 with the co-
efficients (64) to represent the unperturbed stress (12), the corresponding unperturbed complex
potential in the conformal plane can be obtained through the multinomial theorem [26] as

g∞(ζ, ξ, n,m) = (aΩ(n, ξ))m+1 T (m)
∞
∑

j=0

Lm+1−jn ζ
m+1−jn, (68)

where the coefficients Lm+1−jn are given in the form

Lm+1−jn =
∑

Cj(l0,l1,..,l∞)

(

m+ 1

l0, l1, · · · , l∞

) ∞
∏

k=0

(d1−kn)
lk , (69)
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with Cj (l0, l1, .., l∞) representing the double conditions applied on the sum, as

Cj (l0, l1, .., l∞) :

{

∞
∑

k=0

lk = m+ 1
⋂

∞
∑

k=1

k lk = j

}

, (70)

where lk ∈ N. Note that the symbol in brackets in equation (69) represents the multinomial
coefficient defined through the factorial function, as

(

m+ 1

l0, l1, · · · , l∞

)

=
(m+ 1)!

l0! l1! · · · l∞!
. (71)

Introduction of the boundary conditions expressing either null traction along the boundary
of the star-shaped void (χ = 1) or allowing only for a rigid body-displacement of the rigid in-
clusion along its boundary (χ = −1), the perturbed complex potential gp(m)(ζ, ξ, n) is obtained
as

(72)

gp(ζ, ξ, n,m) = (aΩ(n, ξ))m+1



χT (m)



−Lm+1−qn δm+1,qn +

q
∑

j=0

Lm+1−jn

ζm+1−jn





− T (m)
∞
∑

j=q+1

Lm+1−jn

ζjn−m−1



 ,

so that the complex potential, solution of the isotoxal star-shaped polygonal voids and rigid

inclusions, follows in a closed-form solution

(73)

g(ζ, ξ, n,m) = (aΩ(n, ξ))m+1



−χT (m)Lm+1−qn δm+1,qn

+

q
∑

j=0

Lm+1−jn

(

T (m)ζm+1−jn +
χT (m)

ζm+1−jn

)



 ,

as the sum of a finite number of terms.
Note that the complex potential (73) displays a rigid-body motion component for both the

rigid inclusion and the void when q = (m + 1)/n. Furthermore, the complex potential (73)
simplifies in the following particular cases

• n > m+ 1 (equivalent to q = 0),

g(ζ, ξ, n,m) = (aΩ(n, ξ))m+1

[

T (m)ζm+1 +
χT (m)

ζm+1

]

. (74)

This case embraces an infinite set of solutions, for instance a 5-pointed isotoxal star subject
to uniform, linear, quadratic and cubic remote antiplane shear load (m = 0, 1, 2, 3);

• m = 0 (remote uniform antiplane shear)

g(ζ, ξ, n) = aΩ(n, ξ)

[

T (0)ζ +
χT (0)

ζ

]

, (75)

corresponding to the solution for regular polygonal inclusions [17]).
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Figure 6: A five pointed star (n = 5, ξ = 1/10) polygonal void (left) is subject to a remote uniform antiplane

shear (characterized by c
✩(0)
0 and b

✩(0)
0 =0), while a rigid inclusion (right) is subject to the same remote shear

field but rotated of π/2 (so that the remote stress field is characterized by b
★(0)
0 = c

✩(0)
0 and c

★(0)
0 = 0). Under

these conditions, the dimensionless shear stress fields (τ (0)(x1, x2)/τ
∞(0)) are identical for both the void and the

rigid inclusion.

3.3 Shear stress analogies between rigid inclusions and voids

The purpose of this section is to highlight some special cases in which the stress fields generated
within a matrix by a rigid inclusion are analogous to those generated when a void (of the same
shape) is present.

Let us consider two remote stress fields of order m, equation (12), remotely applied to a
matrix containing a void and a rigid inclusion (with the same shape) and which are defined

respectively by the loading constants b
✩(m)
0 , c

✩(m)
0 and b

★(m)
0 , c

★(m)
0 . From the obtained solution

(73), if these constants satisfy the conditions

b
✩(m)
0 = c

★(m)
0 , b

★(m)
0 = −c

✩(m)
0 , (76)

then the following shear stress analogy occurs

τ
✩(m)
13 ≡ τ

★(m)
23 , τ

✩(m)
23 ≡ −τ

★(m)
13 , (77)

while, if the loading constants satisfy

b
✩(m)
0 = −c

★(m)
0 , b

★(m)
0 = c

✩(m)
0 , (78)

then another shear stress analogy occurs

τ
✩(m)
13 ≡ −τ

★(m)
23 , τ

✩(m)
23 ≡ τ

★(m)
13 . (79)

Considering the above analogies, whenever the loading constants satisfy the conditions
∣

∣

∣
b

✩(m)
0

∣

∣

∣
=
∣

∣

∣
c

★(m)
0

∣

∣

∣
,

∣

∣

∣
b

★(m)
0

∣

∣

∣
=
∣

∣

∣
c

✩(m)
0

∣

∣

∣
, b

✩(m)
0 c

✩(m)
0 = −b

★(m)
0 c

★(m)
0 , (80)

the modulus of the shear stress, equation (4), within the matrix generated by the void or by
the inclusion are the same

τ✩(m) ≡ τ★(m). (81)
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An example of the identity of the fields of shear stress modulus generated by a void and a
rigid inclusion under the conditions (80) is shown in Fig. 6 in the particular case of uniform
remote stress, m = 0.

4 Conclusions

Complex potentials and conformal mapping techniques have led to the analytical solution of
isotoxal star-shaped polygonal voids and rigid inclusions (and also star-shaped cracks and stiff-
eners) subject to remote nonuniform antiplane shear loads. This solution will provide a guide
for the development of numerical techniques in the presence of sharp corners and is important
in the design of composite materials. The results pave the way to the discovery of situations
in which the singularities (usually present at the inclusion vertices) disappear. This important
issue is systematically addressed in Part II of this study.
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