have been described. Very similar qualitative results are obtained for a continuous system of a uniform elastic cantilever subjected to a follower load at its tip and having a pinned support with a rotationally symmetric

References

Received October 24, 1991

Address: Prof. Dr. A. Guran, The Catholic University of America, Mechanical Engineering Department, Washington, D.C. 20064, U.S.A.; Prof. Dr. R. H. Plaut, Dept. Civil Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0105, U.S.A.

BGN, D.; ZACCARIA, D.

Eigenvalues of the Elastostatic Constitutive Operator

MSC (1991): 73E05

1. Introduction

The idea of non-associative flow-rules in elastostatics dates back to the works of M. Zhao [1] and Mandel [2]. In the modern technical literature, non-associativity is considered as the key feature for modelling the behavior of porous metals [3], of metals showing the Strength-Differential effect [4], of concrete and geomaterials [5, 6]. Moreover, deviations from normality can model non-Schmid effects in crystals [7] and result to promote various kinds of material instability such as localization of deformation [8], surface instability [9] and plastic cavitation [10].

Due to its importance in the modelling of many materials of engineering importance, the elastostatic operator with non-associative flow-rule has been extensively investigated. In particular, MAIER and HÜCKEL [11] found the necessary and sufficient condition for positive definiteness of the elastostatic operator, for [9] elasticity and BGN, and ZACCARIA [12] for strong ellipticity. Moreover, in the particular case when the tensors giving the plastic flow-mode and the yield surface gradient are co-axial, the conditions of loss of strong ellipticity [12] and loss of ellipticity [13, 14] can be given in an explicit form. Even though the elastostatic operator has been studied in many details, few information seem to be known about its eigenvalues. The only contribution has been given by PRESTOR in an unpublished note [15], where the eigenvalues are shortly derived, together with a condition for excluding complex eigenvalues.

A formal solution to the eigenvalue problem of the elastostatic operator, different from that reported in [15], is presented in this paper. It is shown that more than two complex conjugate eigenvalues are not possible. The necessary and sufficient condition for complex eigenvalues derived in [15] is obtained and then re-written excluding the case of complex eigenvalues occurring for negative values of the plastic modulus. In this case it is shown that complex eigenvalues are excluded for deviatoric normality. Moreover, in the case of isotropic hardening, assuming the existence of a smooth plastic potential surface, it is shown that complex eigenvalues are not admitted, even in the case of deviatoric non-associativity. Finally, an application is presented for the model proposed in [4].

This model is suitable for the description of the behavior of metals showing the Strength-Differential effect.

2. Constitutive assumptions

Reference is made to an initially isotropic, time independent, elastostatic solid having two torsional zones. The behavior of this solid is governed by a constitutive operator which relates a generic objective rate of any symmetric stress measure T to the velocity of deformation D, in the following form (details on the notation used in this paper can be found in [16]):

$$
\dot{T} = E[D] \quad \text{if} \quad N \cdot D \leq 0,
$$

$$
\dot{T} = E[D] \quad \text{if} \quad N \cdot D \geq 0,
$$

where $E : \Sigma \rightarrow \Sigma$ is the elastic fourth-order tensor, N gives the direction of the yield surface gradient in the deformation space and the fourth-order tensor $H : \Sigma \rightarrow \Sigma$ defines the comparison solid corresponding to the loading branch of the constitutive operator:

$$
H = E - \frac{1}{\mu} \otimes N.
$$

in which the symbol \otimes denotes the dyadic product, μ gives the direction of the plastic flow in the deformation space and the plastic modulus μ is related to the hardening modulus μ_0 through:

$$
\mu = \mu_0 + E^{-1}[N].
$$

It should be noted that no restrictions are placed on the choice of the type of hardening, as well as on the choice of N and μ, which can be not coaxial.

The elastic tensor E will be assumed to be an isotropic mapping $\Sigma \rightarrow \Sigma$. Consequently:

$$
E = J I \otimes I + 2\mu I,
$$

where I and J denote the second and fourth-order identity tensors respectively and μ and λ are the Lamé moduli. It is well-known [17] that (5) merely represents an assumption in finite-elasticity theory. Nevertheless, hypothesis (5) has been widely employed in bifurcation analyses of elastic and elastoplastic solids [4, 6, 8, 18, 19].

The eigenvalue problem for the elastic tensor E has the following solution (see, e.g. [20], §22):

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
<th>Eigenspaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2\mu + 3\lambda$</td>
<td>1</td>
<td>V_{λ}, $\lambda \in \mathbb{R}$</td>
</tr>
<tr>
<td>2μ</td>
<td>5</td>
<td>$F = 0$</td>
</tr>
</tbody>
</table>

All the eigenvalues of the elastic tensor are also eigenvalues of the elastostatic operator. In fact, by changing (if necessary) the sign
of the corresponding eigentensor, it is always possible to satisfy the unloading condition $N \cdot \mathbf{D} \leq 0$. For the same reason, all eigenvalues of the tensor \mathbf{H} are also eigenvalues of the elastoplastic operator. Then, all eigenvalues of the elastoplastic operator are the union of the eigenvalues of \mathbf{E} and \mathbf{H}. The eigenvalues and corresponding eigentensors of \mathbf{H} will be obtained in the following.

3. Eigenvalue problem for \mathbf{H}

The eigenvalue problem for the operator \mathbf{H} is posed as follows:

\[\mathbf{H} \mathbf{V} = \lambda \mathbf{V}, \quad \mathbf{V} \in \text{Sym} - \{0\}. \]

Eqn. (6), by using (3) and (5), becomes

\[\lambda (\text{tr} \mathbf{V}) \mathbf{I} + 2\mu \mathbf{V} - \frac{1}{\eta} (\mathbf{V} \cdot \mathbf{N}) \mathbf{M} - \eta \mathbf{V} = 0. \]

The following (non-orthogonal) basis of Sym is introduced:

\[\mathbf{E}_i \quad (i = 1, 2, \ldots, 6), \]

such that:

\[\mathbf{E}_1 = \mathbf{I}, \]

\[\mathbf{E}_2 = \mathbf{N}, \]

\[\text{tr} \mathbf{E}_i = 0, \quad \mathbf{E}_i \cdot \mathbf{E}_j = 1, \quad (i = 3, \ldots, 6). \]

The problem (7) can be solved through a projection onto the basis (8), thus obtaining:

\[\begin{aligned}
(3\lambda + 2\mu - \eta) \text{tr} \mathbf{V} + 2\mu (\mathbf{V} \cdot \mathbf{N}) \text{tr} \mathbf{M} &= 0 \\
2\mu (\mathbf{V} \cdot \mathbf{N}) \text{tr} \mathbf{M} - \eta (\mathbf{V} \cdot \mathbf{N}) \mathbf{M} - \eta \mathbf{V} &= 0.
\end{aligned} \]

The system (13) is the representation of (7) in the dual basis of (8), which is defined as:

\[\mathbf{E}_i \cdot \mathbf{E}_j - \delta_{ij}, \]

where δ_{ij} is the Kronecker symbol.

The characteristic equation is obtained from (13) in the form:

\[(2\mu - \eta)^3 \left[(3\lambda + 2\mu - \eta) (2\mu - \frac{1}{\eta} \mathbf{M} \cdot \mathbf{N} - \eta) + \frac{1}{\eta} (\text{tr} \mathbf{M}) (\text{tr} \mathbf{N}) \right] = 0. \]

Once the solutions to (15) are known, system (13) gives the components of the eigentensors in the dual basis defined by (14).

\[
\begin{align*}
\mathbf{V} &= (\text{tr} \mathbf{V}) (\mathbf{N} \cdot \mathbf{N}) - (\mathbf{V} \cdot \mathbf{N}) \mathbf{I} - 2\mu \mathbf{N} - (\text{tr} \mathbf{N}) \mathbf{I} \\
&+ (3\lambda + 2\mu - \frac{1}{\eta} \mathbf{M} \cdot \mathbf{N}) \mathbf{M} + \sum_{i=3}^{6} (\mathbf{V} \cdot \mathbf{E}_i) \mathbf{E}_i.
\end{align*}
\]

From (15) it is seen that 2μ is an eigenvalue with algebraic multiplicity four. System (13) and equation (16) show that 2μ is associated to the eigenspace spanned by $\mathbf{E}_i (i = 3, \ldots, 6)$, which is the space of the deviatoric eigentensors orthogonal to \mathbf{N}. Moreover, from (15) the other two eigenvalues result to be the solutions of the equation:

\[
\eta^3 - (3\lambda + 4\mu - \frac{1}{\eta} \mathbf{M} \cdot \mathbf{N}) \eta + (3\lambda + 2\mu - \frac{1}{\eta} \mathbf{M} \cdot \mathbf{N}) + \frac{1}{\eta} (\text{tr} \mathbf{M}) (\text{tr} \mathbf{N}) = 0. \]

4. Complex eigenvalues of \mathbf{H}

Being non-symmetric, tensor \mathbf{H} may possess two complex conjugated eigenvalues. Such eigenvalues correspond to negative values of the discriminant of (17), which is

\[\Delta = \left(3\lambda + 1 - \frac{\eta}{\mu} \right)^2 - 4 \frac{1}{\eta} (\text{tr} \mathbf{M}) (\text{tr} \mathbf{N}). \]

From (18) it is seen that $\Delta < 0$ if and only if:

\[9\lambda^2 \mu^2 - 4(3\lambda + 1) (\text{tr} \mathbf{M}) (\text{tr} \mathbf{N}) (\text{tr} \mathbf{M} \cdot \mathbf{N}) < 0. \]

Therefore, Δ is negative for values of μ internal to the interval defined by μ_1 and μ_2:

\[\mu_1 < \mu < \mu_2, \]

\[\mu_1 = \frac{1}{9\lambda^2 \mu_2} (\text{tr} \mathbf{N}) \left(\text{tr} \mathbf{M} + \sqrt{\text{tr} \mathbf{M}^2 - 3 \text{tr} \mathbf{N} \cdot \text{tr} \mathbf{M}} \right)^2. \]

It is concluded that a necessary and sufficient condition for the existence of complex eigenvalues is

\[(\text{tr} \mathbf{N}) (\text{tr} \mathbf{M}) \left(\text{tr} \mathbf{M} - 3 \text{tr} \mathbf{N} \right) < 0. \]

It is important to note, however, that if $(\text{tr} \mathbf{N}) (\text{tr} \mathbf{M}) < 0$ and $(\text{tr} \mathbf{N}) (\text{tr} \mathbf{M}) - 3 \text{tr} \mathbf{N} < 0$, complex eigenvalues are possible for negative values of μ_1 and μ_2. Thus, if (as usually accepted) μ is restricted to strictly positive values, the necessary and sufficient condition (21) becomes:

\[(\text{tr} \mathbf{N}) (\text{tr} \mathbf{M}) > 0 \quad \text{and} \quad (\text{tr} \mathbf{M}) - 3 \text{tr} \mathbf{N} > 0. \]

Now, by introducing the yield surface gradient \mathbf{Q} and the plastic flow-mode \mathbf{P} in the stress space:

\[\mathbf{N} = \mathbf{E} \mathbf{Q} = \lambda (\text{tr} \mathbf{Q}) \mathbf{I} + 2\mu \mathbf{Q}, \]

\[\mathbf{M} = \mathbf{E} \mathbf{P} = \lambda (\text{tr} \mathbf{P}) \mathbf{I} + 2\mu \mathbf{P}, \]

the solutions (20) become:

\[\frac{1}{\mu_1} \left[(3\lambda + 2\mu) \sqrt{\left(\mathbf{Q} + d ev \left(\mathbf{Q} - d ev \left(\mathbf{P} \right) \right) \right)^2} \right], \]

where $d ev (\pm)$ denotes the deviatoric part of a tensor. Moreover, conditions (21) become:

\[(\text{tr} \mathbf{Q}) > 0 \quad \text{and} \quad \text{det} \left(\mathbf{Q} - d ev \left(\mathbf{P} \right) \right) < 0. \]

Thus, in the case of deviatoric associativity, where $d ev (\mathbf{Q}) = d ev (\mathbf{P})$, complex eigenvalues are not possible.
segment of the six 60° segments marked off by the three diameters in the deviatoric section. In this segment, the convexity and continuity of the yield and plastic potential functions imply that vectors \(\mathbf{d} \cdot \mathbf{e} \mathbf{Q} \) and \(\mathbf{d} \cdot \mathbf{e} \mathbf{P} \) lie between the two extreme cases, corresponding to the two unit vectors directed along two adjacent diameters (Fig. 1). These two vectors form a 60° angle and, therefore, it is concluded that:

\[
\frac{1}{2} \mathbf{d} \mathbf{e} \mathbf{Q} \cdot \mathbf{d} \mathbf{e} \mathbf{P} \leq \mathbf{d} \mathbf{e} \mathbf{Q} \cdot \mathbf{d} \mathbf{e} \mathbf{Q} \leq \mathbf{d} \mathbf{e} \mathbf{Q} \cdot \mathbf{d} \mathbf{e} \mathbf{P}
\]

and thus (26) is never satisfied.

5. Application

The isotropic elastoplastic model proposed by Needleman and Rice [4], for modelling metals showing the Stress-Differential effect, is based on the Drucker-Prager yield surface and on the Huber-Hencky-von Mises plastic potential. Tensors \(\mathbf{P} \) and \(\mathbf{Q} \) are given by:

\[
\mathbf{P} = \frac{\mathbf{d} \mathbf{e} \mathbf{v}}{2J_2},
\]

\[
\mathbf{Q} = \frac{\mathbf{d} \mathbf{e} \mathbf{v}}{2J_2} + \frac{\mathbf{S} \mathbf{D} \mathbf{I}}{2\sqrt{3}},
\]

where \(J_2 = \mathbf{d} \mathbf{e} \mathbf{v} (\mathbf{d} \mathbf{e} \mathbf{v}) / 2 \) is the second invariant of the deviatoric stress and \(\mathbf{S} \mathbf{D} \) is defined as:

\[
\mathbf{S} \mathbf{D} = \frac{2}{\sigma_i - \sigma_j} \sigma_i \sigma_j,
\]

In equation (30) \(\sigma_i \) are the yield strengths in compression and tension, respectively. In this case eqn. (19) becomes

\[
\Delta = \left(\frac{3\lambda + \frac{2}{\mu} \sqrt{3} J_2 \mu \right)^{\frac{1}{2}}
\]

and the solution of (17) are

\[
\eta_1 = \frac{3\lambda + 2\mu}{\gamma} \sqrt{J_2},
\]

\[
\eta_2 = -\frac{2\mu}{\gamma} \sqrt{J_2}
\]

The eigenvalue \(\eta_1 \) is the elastic eigenvalue associated to the eigensensor \(I \), and it can be noted that the eigenvalues do not depend on \(\mathbf{S} \mathbf{D} \). Moreover, \(\mathbf{Q} \) and \(\mathbf{P} \) are the gradients of a conical and a cylindrical surface, respectively, and the intersection with any deviatoric plane of the yield surface or the plastic potential surface in Haigh-Westergaard is a circle centred in the origin of axes.

Acknowledgment

The financial support of the Italian Ministry of University and Scientific and Technological Research (M.U.R.S.T.) and of the Italian Research Council (C.N.R. — contr. 91.02915. CT07) is gratefully acknowledged.

References

2-dimensional Euclidean space \mathbb{R}^2 which fulfills the usual symmetry conditions
\[A_{jkl} = A_{kjl} = A_{ljk} = A_{ljk}. \]

Here, A_{ijkl} denotes the components of A in a rectangular Cartesian coordinate system $x_i, i = 1, 2$. An isotropic function or invariant of A is a function $f(A_{ijkl})$ of the components A_{ijkl} for which $f(A_{ijkl}) = f(A_{ijkl})$ with respect to the components A_{ijkl} of A in any rectangular Cartesian coordinate system X. A set of isotropic invariants I_1, \ldots, I_n of A is said to be an isotropic integrity basis or function basis of A, if every isotopic polynomial or function of A can be expressed as a polynomial or a single-valued function in numbers of this set; it is said to be irreducible, if none among I_1, \ldots, I_n can be expressed as a single-valued function of the remainders. In literature an irreducible isotropic function basis is also named a complete and irreducible representation for isotropic functions. Up to now we have no precise knowledge of complete and irreducible representation for isotropic functions of A, although in [1–3] this problem has been discussed.

The set of all symmetric 2-order tensors in \mathbb{R}^2 together with the usual definition of the inner product $x \cdot y = x_i y_i$ constitutes a 2-dimensional Euclidean space, say \mathbb{R}^2. Thus, A is a symmetric linear transformation on \mathbb{R}^2/m, and in this sense we may employ the following notation:

\[A = A_{ijkl}, \quad A_{ijkl}(= A_{jikl} = A_{ikjl} = A_{ljik}) \quad A^T = (A_{ijkl}) = (A_{jikl}), \quad A^{-1} = (A_{ijkl})^{-1}, \quad A^{\dagger} = (A_{jikl})^{-1} \quad A_{ijkl}(= A_{jikl} = A_{ikjl} = A_{ljik}). \]

where $I = \delta_{ij}$ denotes the identity matrix, A_{ijkl} the Kronecker delta symbol denotes the 2-order identity tensor in \mathbb{R}^2 and $A = A_{ijkl}$ with λ and μ such that $A_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \delta_{ik} \delta_{jl} + \mu \delta_{il} \delta_{jk}$. In the theory of linear elasticity, A_{ijkl} is known as general elasticity tensor and \mathbf{I}, with Lamé elasticity constants λ and μ, as the isotropic elasticity tensor. By the use of \mathbf{II}, BETTEN [1] has introduced the so-called extended characteristic polynomial of A, that is $\mathbf{II} = \mathbf{II}(A)$, or in its matrix form,

\[
\begin{bmatrix}
 A_{1111} & A_{1112} & \frac{1}{2} A_{1122} & s_{11} \\
 A_{1112} & A_{1222} & \frac{1}{2} A_{1222} & s_{12} \\
 \frac{1}{2} A_{1122} & \frac{1}{2} A_{1222} & A_{2222} & s_{22} \\
 s_{11} & s_{12} & s_{22} & 0
\end{bmatrix}
\]

\[= \begin{bmatrix}
 \lambda + 2 \mu & \lambda & 0 & 0 \\
 \lambda & \lambda + 2 \mu & 0 & 0 \\
 0 & 0 & 2 \mu & 0
\end{bmatrix}
\]

From (1.5), the following extended characteristic polynomial:

\[P(\lambda, \mu) = \det (A - \mathbf{II}) = \lambda^3 - 4 \mu \lambda^2 + 2 \mu^2 \lambda - \mu^3 - 2 \mu - 2 \mu^2 \lambda + \mu^3. \]

is arisen, in which $J_1, J_2, J_3, K_1,$ and K_2 (see 2.3) are invariants of A:

\[J_1 = I_1 = \text{tr} \ A, \quad J_2 = I_1^2 - 4 I_2, \quad J_3 = (2 I_3 - 3 \text{tr} \ A)^2 - 4 I_3, \]

\[K_1 = (A_{1111} - A_{2222})^2 - 2 A_{1222} A_{1111} - 2 A_{1122}^2 + 2 A_{2222} A_{1111} - 2 A_{1222}^2 - 2 A_{1112} A_{2222} + A_{1122} A_{2222} - 2 A_{1222} A_{1112} \]

BETTEN [1, 2] and BETTEN and HELDES [3] have already discussed the irreducibility and the completeness of the system (1.7). For instance, with the aid of computer algebra, BETTEN and HELDES [3] find that all the invariants of A with degree 4 (eg. $A_{ijkl}(A_{mn} A_{mnpq} A_{npqr})$) can be expressed as polynomials of the invariants given in (1.7). Thus, they suggested in [3] without proving that the invariants of A with the highest degree 3 would constitute an integrity basis of A.

In this short note we prove that the invariants $I_1, I_2, I_3, K_1,$ and K_2 of A constitute indeed an irreducible isotropic function basis (not only integrity basis) of A.

2. The isotropic function basis

An isotropic function basis of A may be constructed in such a way, as employed in [7–9], that we choose a rectangular Cartesian coordinate system X in which we are able to determine all of the components A_{ijkl} of A by the use of the numbers of the basis.

As a symmetric linear transformation on the 3-dimensional Euclidean space \mathbb{R}^3, A can be expressed in its spectral form:

\[A = A_{11} e_1 \otimes e_1 + A_{22} e_2 \otimes e_2 + A_{33} e_3 \otimes e_3. \]

Here, A_{11}, A_{22}, A_{33} with $A_{11} \geq A_{22} \geq A_{33}$ are the eigenvalues of A which are uniquely determined by the I_1, I_2, I_3 in terms of the relations

\[I_1 = A_{11} + A_{22} + A_{33}, \quad I_2 = A_{11}^2 + A_{22}^2 + A_{33}^2, \quad I_3 = A_{11}^3 + A_{22}^3 + A_{33}^3. \]

and e_1, e_2, e_3 are the characteristic vectors (in \mathbb{R}^3) of A which are unit and orthogonal:

\[e_1 \cdot e_2 = e_2 \cdot e_3 = e_3 \cdot e_1 = 0, \quad e_1 \cdot e_1 = e_2 \cdot e_2 = e_3 \cdot e_3 = 1. \]

Consider the following possibilities for A_{11}, A_{22}, A_{33}:

\[\begin{align*}
\text{Case i}: & & A_{11} > A_{22} > A_{33}. \\
\text{Case ii}: & & A_{11} > A_{33} > A_{22}. \\
\text{Case iii}: & & A_{22} > A_{11} > A_{33}. \\
\end{align*} \]

For the case $A_{11} > A_{22} > A_{33}$, we can write

\[A_{11} e_1 \otimes e_1 = (A_{11} - A_{22}) (A_{11} e_1 \otimes e_1 + A_{22} e_2 \otimes e_2) + A_{22} e_2 \otimes e_2. \]

and

\[A_{22} e_2 \otimes e_2 = (A_{22} - A_{33}) (A_{22} e_2 \otimes e_2 + A_{33} e_3 \otimes e_3) + A_{33} e_3 \otimes e_3. \]

in which $A = (A_{11} - A_{22}) (A_{11} e_1 \otimes e_1 + A_{22} e_2 \otimes e_2) + A_{22} e_2 \otimes e_2$. Let A_1 be a given rectangular Cartesian coordinate system. From (2.4), we may further uniquely determine e_1, e_2, e_3 by requiring that

\[e_1 \cdot e_2 > 0 \quad \text{or} \quad e_1 \cdot e_3 > 0 \quad \text{or} \quad e_2 \cdot e_3 > 0, \]

in which e_1, e_2, e_3 are the components of e_1 in X. Thus, we may choose a rectangular Cartesian coordinate system X and determine the components e_1, e_2, e_3 instead of the components A_{ijkl} of A in order to determine the isotropic function basis of A. However, it is well known [10–9] that the invariants e_1, e_2, e_3 of A, $\beta = 1, 2, 3$, with $\beta \neq \beta$, constitute a function basis of e_1, e_2, e_3; in addition, the e_1, e_2, e_3 are to be used in (2.3) as constants. Thus, only the e_1, e_2, e_3 should be dealt with and from (2.4) and (2.5) the e_1, e_2, e_3 can uniquely be determined by

\[A_{11} e_1 \otimes e_1 + A_{22} e_2 \otimes e_2 + A_{33} e_3 \otimes e_3. \]

Case ii: $A_{11} > A_{33} > A_{22}$.

Case iii: $A_{22} > A_{11} > A_{33}$.

The analysis given above in cases i, ii, and iii thus yields that the set of the five invariants $I_1, I_2, I_3, K_1,$ and K_2 determine uniquely the e_{12}. Analogously we can discuss the case: $A_{11} > A_{22} > A_{33}$.

3. The irreducibility of the isotropic function basis

We prove the irreducibility of I_1, I_2, I_3 according to the method employed by PENNISI and TROVATORE [11]. For convenience we give firstly the expressions of I_1, I_2, I_3 in terms of the components of A: