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A note on strain localization for a elass of non-associative plasticity rules*

D. Bigoni, Bologna and T. Hueekel, Durham

Summary: Explicit solutions for the formation of discontinuity bands are obtained, for a class of non-
associative flow rules. Specialization to particular yield functions for pressure sensitive, dilatant or com-
pactive materials is given.

Bemerkungen zur Lokalisierung der Verformungen fiir eine Klasse
von nicht assoziierten plastischen FlieBgesetzen

Ubersicht: Es werden explizite Losungen fiir die Bildung von Unstetigkeitsflichen bei einer Klasse von
nicht assoziierten plastischen FlieBgesetzen hergeleitet. Diese werden insbesondere fiir einige spezielle FlieB-
gesetze diskutiert, die zur Beschreibung von druckempfindlichen, dilatierenden oder kontrahierenden
Materialien geeignet sind.

1 Introduction

The occurrence of a particular type of non-uniqueness in the incremental elastoplastic response,
in form of a strain rate discontinuity across a narrow planar band, was discussed by Rice and
Rudnicki [1—3], and by Vardoulakis [4] in order to model strain localization in metals and rock-
like materials.

The loading threshold corresponding to strain localization is attained when the acoustic
tensor nDn becomes singular, i.e. for at least one direction:

det (nDn) = 0. (1.1)

Here D is the constitutive fourth order tensor of incremental stiffness of the material and n is
a versor orthogonal to the discontinuity band. The condition (1.1) corresponds to the vanishing
of the speed of acceleration waves [5—8].

In the preceding works [9, 10] it is shown that, under the hypothesis of small strains and small
rotations, it is possible to obtain an explicit expression for the critical hardening modulus,
corresponding to the localization of deformations, for rate independent associative and non-
associative elastoplasticity. The relation of such a modulus to the loss of positiveness of the second
order work [11—14] was also discussed for plane stress and plane strain. In the case of plane
strain and plane stress associative elastoplasticity it was shown [9] that the second order work
necessarily vanishes at the formation of a shear band. However, this may not be the case when
a localization into a splitting discontinuity is attained.

In this paper, using the general method presented in [10], the conditions for strain localization
are obtained for elastoplastic materials with a particular type of non-associative flow rule. The
flow rule considered describes the behavior of pressure sensitive, dilatant or compactant materials
[1, 15, 16]. Moreover, coupled elastoplastic deformation of highly porous materials with elastic
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bulk modulus increasing due to void collapse can be described by such a flow rule [17]. Explicit
expressions for the critical hardening modulus (corresponding to the localization) and for the
inclination of the band are finally given for three particular yield functions. Conditions for differ-
ent forms of discontinuity bands, i.e. corresponding to shear or splitting modes, are discussed.

2 Basie relationships

The behaviour of the isotropic, homogeneous elastoplastic material considered here is character-
ized by
— a smooth yield surface, function of the stress e and of the hardening parameter k:

o, k) =0, &k =k(€,&); (2.1)
— a flow rule of the plastic strain rate tensor €? — € — €*

& — AP; (2.2)
— the stress-strain law '

6=E:¢é— AE: P, (2.3)

subjected to the conditions

A=0, f=<0, fAd=0; (2.4)

— the plastic hardening modulus H

_ 9y, (2.5)

oe?
— the elastoplastic stiffness tensor D®?, obtained from (2.1)—(2.5)

P E®(@Q:E)

6 =D ¢, D =F — .
H+P:E:Q

(2.6)
In (2.1)—(2.6) a dot denotes derivative with respect to time. Moreover, P is a symmetric second
order tensor determining the mode of the plastic flow, different (non-associative plasticity) from
the yield surface gradient Q, A is referred to as the plastic multiplier, € represents the elastic
strain rate, and E indicates the isotropic fourth order elastic tensor. Due to the non-associativity
of the plastic strain rate to the yield surface (P = @), the tensor D, given by (2.6), does not
possess the major symmetries,
In what follows, the particular form

P=Q+¢b (2.7)

of the tensor P will be considered where & is any scalar function and § is the Kronecker delta.
In the case £ = 0 the associative flow rule is recovered. The condition (2.7) restricts the non-
associativity of the flow rule to the volumetric component of the plastic strain rate. This assump-
tion is valid for many media of engineering importance, particularly for granular materials,
whose plastic volumetric changes are ill estimated when an associative flow rule is assumed.
Experimental evidence [18, 19] shows at the same time that the deviatoric plastic strain rate
follows the normality rule.

The threshold in terms of hardening modulus, corresponding to the bifurcation in the form of a
localization into a planar band was obtained from (1.1) by Rice [2], Rice and Rudnicki [3]. The locali-
zation takes place when the hardening modulus reaches the critical values H/,, obtained as the
solution of the constrained maximization problem

H!, = 2G' max [2nPQn — (nPn) mQn) — P: Q — 4 (@Pn — tr P)(nQn — tr Q)],
n — P

(2.8)
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subjected to |n| = 1, where @ is the elastic shear modulus, » is Poisson’s ratio and tr indicates the
trace of a tensor.

The velocity discontinuity vector g which defines the strain rate jump across the band for
the n which maximizes (2.8) is

V4

g=2nP — 1 1 (nPn) n + 1 (tr P)n. (2.9)

— — v
A vector g normal to the versor n describes a localization mode corresponding to a simple shear
deformation rate, whereas when g is parallel to n a splitting mode discontinuity occurs. The term
shear band will be used to denote all the cases where g and n are not parallel. On the other band,
the term splitting mode will denote co-axiality of g and n, i.e. simple extension or compression
strain rates into the band. It may be observed that the calculation of the critical hardening
modulus in (2.8) is coupled with the determination of the vector n. Ad hoc numerical procedures
were therefore developed [20] to arrive at the value of the critical hardening modulus.

It is worth noting that, if the tensor I in (1.1) is identified with the tensor D¢? of (2.6), the
solution (2.8) represents the threshold to localization of the comparison solid corresponding to
the plastic loading branch. This is shown [14] to provide an upper bound to strain localization.
A lower bound is obtained from (1.1) by identifing D with the symmetrized incremental stiffness
tensor of the comparison solid introduced by Raniecki and Bruhns [14]. Under the hypothesis of
single, smooth yield surface and plastic potential it was shown [3] that the comparison solid
corresponding to the plastic loading branch sets the lower limit to localization. Thus, in what
follows, only the localization of the comparison solid in loading will be considered.

First, however, it will be shown that the critical modulus and the vector n may each be ob-
tained in an explicit de-coupled form if an appropriate reference system is employed.

3 Loealization criterion

In this section an explicit form of the expression for the critical hardening modulus will be
derived for localization into a planar band, in the case of general unconstrained kinematics.
The constrained maximization problem (2.8) may be solved explicitely leading to uncoupled
expressions for the critical modulus and the discontinuity band direction if a suitable system of
reference is chosen. To that end the problem (2.8) is rewritten as the unconstrained maximization
of the Lagrangean function

L(n, ») = 26 [2nPQn — (nPn) nQn) — P: Q — Ii— (uPn — tr P)(nQn — tr Q)]

— o(mn — 1) (3.1)

where o is & Langrangean multiplier. By specializing the tensor P in the form (2.7) and choosing
the principal axes of stress as the reference system, the maximization of function (3.1) becomes
equivalent to the solution of the system of equations

2n(Q; + &) Q; —

g [(23Q; 4 n3Q; + niQ) 2Qin; + &n) + &Qimi]

1 i - [(@: + @ + Q) (€ + 200) + 38Qi] mi = omi/(26), (3.2)

2 2 2
n,—’-’ﬂ]*}—ﬂk:l

where the indices 7, j, £ (no summation) refer to the components in the reference system of prin-
cipal stresses and are to be permuted in the range I, IT and III. The system of four equations
(3.2) has four independent variables which are the three components of versor the n and the
Langrangean multiplier w. The values of the components of n which are solutions of the system
(3.2) yield the extrema moduli H' of (3.1).
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Let us examine the following possible cases of the orientation of the discontinuity band in
terms of its normal versor n in the reference system of principal stress directions:

i. None of the components of n is null.
ii. One component of n is null,
iii. Two components of n are null.

i. If all components of the versor n are different from zero, the system (3.2) cannot have a unique
solution. This conclusion is obtained examining the determinant of the matrix of coefficients
which is always zero. Consequently, the following three cases are possible:

1. The tensor Q does not have any symmetry:

Q1 #+ G, Qu = G, @1 =+ Qui- (3.3)

In this case the system (3.2) does not possess any solution. The extrema of (3.1) are to be sought
in the cases when at least one component of the versor n is zero (cases ii. and iii.).

2. The tensor Q is symmetric with respect to the axis k:
Q=0 Q=+ (34)

The system (3.2) admits now oo! solutions. The inclination of the band with respect to the axis k
is uniquely determined from (3.2). On the other hand, all the possible combinations of components
n; and n; yield the same extremum value of (3.1). The component ; and the corresponding value
of the hardening modulus may be obtained directly, without loss of generality because of the
symmetry, by referring to the case in which one of the components »; or »; is assumed to be zero
(case ii.) If this value of the hardening modulus is critical, i.e. if it is the maximum over all the
extrema, then the number of the possible shear bands becomes infinite, corresponding, as indi-
cated in Fig. 1, to an inclination which is indeterminate with respect to the axes 7 and j.

3. The tensor @ is symmetric with respect to all the principal axes of stress:

@1 = Qu = Qm. (3.5)

Now the system (3.2) admits oo? solutions. The number of possible discontinuity bands is infinite
and the inclination is indeterminate. The critical hardening modulus is obtained, without loss of
generality, again assuming one of the components of the versor n as equal to unity and the two
other as equal to zero (case iii.). It is worth noting that in this case the localization mode is a
splitting discontinuity.

ii. When one of the components of the versor n is zero, the normal to the discontinuity band is
orthogonal to one of the principal stress directions. Suppose n; = 0. Two cases are possible in
which the tensor @ is or is not symmetric with respect to the axis k.

1. The tensor Q is not symmetric with respect to the axis k:

Qi =i= Q; . (3-6)
Then (3.2) yields
o Gt E14)
-9 2@ — ) (3.7)
'ﬂ]?:'l—n?, n = 0.
(7Y
n

Fig. 1. @; = @; shear band localization mode:
Possible directions of versor n
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Note that, in order to be an admissible solution, the value of #? must belong to the interval [0, 1].
This imposes restrictions on the components of @ in (3.7). When the above condition is not
satisfied, the extremum of the modulus (3.1) occurs when two of the components of the versor n
are zero (case iii.). When admissible, (3.7) represents the only solution corresponding a inclined
shear band with respect to the principal stress axes.
Substituting (3.7) into (3.1), the following expression for the corresponding hardening mo-
dulus is obtained:
Hl — (1 + v)_g(éﬂm

N — 4&Qy — 4Ql2c)- (3.8)
4

From (3.8) it may be seen that, in the case of associative plasticity (¢ = 0), the critical harden-
ing modulus cannot be positive. For non-associative plasticity (£ = 0) the critical hardening
modulus may be positive, as in the case of @, = 0.
The discontinuity vector g, corresponding to the band inclination defined through (3.7), is
obtained from (2.9) as
i = [@ — @; + 1 + »)/(2 — 2)] n;,

(3.9)
9i = (@ — @ + &1+ /2 —2)]n;, g =0

where indices are not summed.

2, The tensor Q is symmetric with respect to the axis k:
Qi = Q;. (3.10)

In this case the system (3.2) admits oo! solutions. All the inclinations in respect to the axes 7 and
j yield the same value for the extremum of (3.1). The corresponding hardening modulus is ob-
tained, without loss of generality, by assuming one of the components of the versor n to be zero
in the —j plane (case 777.). If this value of the hardening modulus is critical, i.e. it is the maximum
over all the extrema, then an infinite number of shear bands of indeterminate inclination is
possible (Fig. 2). The localization mode is a splitting discontinuity.

iii. If two of the components of the versor n are zero, i.e. the normal to the discontinuity band is
orthogonal to two of the principal axes of stress, e.g.

n; =1, n;=m =20, (3.11)

the corresponding hardening modulus becomes
26
H' = - T, [@ @)% + 1 4 9) (@ + Q)] — 26(1 + ») 5. (3.12)

Note that, in the associative case (£ = 0), the hardening modulus (3.12) is negative and always
smaller than the modulus (3.8).
The vector g is obtained from (3.11) and (2.9) as

9i = Qi + 2@+ Q)/A —») + EQ+9)/(L—9), g=g=0 (3.13)

where indices are not summed. From the components (3.13) of g it may be noted that the locali-
zation mode is necessarily a splitting discontinuity.

ik

Fig. 2. @; = @; splitting discontinuity mode: Pos-
»  sible directions of versor n
9
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In a generic case, without a priori determined direction of n, the critical hardening modulus is
to be found as the maximum over all the possible extrema. Thus, in order to calculate the critical
hardening modulus, all the extrema are to be evaluated in the way indicated in the subsections
i,, ii. and iii. where the indices are to be permuted in the range I to III. It is to be observed that
in all the cases this reduces to the calculation of inclinations through (3.7) and of the moduli
(3.8) and (3.12).

It is important to note that, excluding the special case of infinite solutions, the normal to the
band is always orthogonal to a principal stress direction.

All the above results reduce to previous findings by Rudnicki and Rice [1]for the case of Huber/
von Mises and Drucker/Prager yield functions. For an arbitrary yield surface and non-associative
flow rule a decoupled solution can be attained employing the maximization procedure for the
problem (3.1), see [10] In the next section the various possible localization modes are discussed.

4 On localization modes

From the above section it may be concluded that the splitting mode localization always occurs
in the following cases:

— The tensor § is symmetric with respect to all principal stress directions;
— the modulus (3.12) is the one that maximizes (3.1).

On the other hand, the shear bands may form when the maximum of expression (3.1) corresponds
to modulus (3.8) and the corresponding band inclination (3.7) is admissible.

The condition under which deformation discontinuity mode is a simple shear strain rate band
is defined by

gn=0. 4.1)
Using (3.7) and (3.9), the condition (4.1) yields
Qi+ Qi+ 2Q + &1 +2) (3 — 2)/(1 —») = 0. (4.2)

Note that, for associative plasticity, the modulus (3.8) is always smaller than the modulus
(3.12), but the inclination (3.7), corresponding to (3.8), may be non-admissible.
" Let us consider the special associative case, including the Huber/von Mises model, when the
tensor @ is expressed in the form

Q= 4s (4.3)

where A4 is any scalar function and s is the deviatoric stress. In absence of kinematical or statical
constraints, as plane strain or plane stress conditions, the inclination (3.7) is always admissible.
Consequently the critical hardening modulus, is

H!, = —2G max [(1 4 ») 4s%]. (4.4)

m=1,ILIII

Let % be the value of index m that maximizes (4¢.4). The condition (4.2) becomes
s(1 — 29) = 0. (4.5)

If the condition (4.5) is satisfied for the value of the hardening modulus defined by (4.4), then
localization of deformation is possible into a simple shear mode band. From (3.7), the band turns
out to be inclined at 45° with respect to the principal stress axes sand j.

Excluding the special case when v = 0.5, the condition (4.3) implies that a simple shear
discontinuity band may occur at a null value of the hardening modulus if the intermediate
principal deviatoric stress reduces to zero. Thus, in a loading process in the presence of an asso-
ciative flow rule (4.3), the first possibility of localization occurs at a null value of the plastic
hardening modulus, when the intermediate principal component of stress deviator vanishes.

Let us now remember that, for associative elastoplasticity, the second order work vanishes,
at a null value of the plastic hardening modulus [11—14]. Thus, in a loading process of a body with
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an associative flow rule of type (4.3), the possibility of a simple shear deformation band always
arises at the vanishing of the second order work. In these conditions, since the positive second
order work criterion represents a sufficient condition for uniqueness, any bifurcation is excluded
before the possibility of formation of simple shear bands.

b Specialization of the criteria

To complement the results of Rudnicki and Rice [1] for Drucker/Prager and Huber/von Mises
yield functions, criteria for the critical hardening moduli and inclinations of the possible band will
be derived now for three more advanced yield surfaces for pressure sensitive, dilatant or compac-
tive materials.

— Roscoe and Burland [21] formulated the modified cam-clay yield condition
f=(tre — 42+ BJ,—C=0 (5.1)

where 4, B and O are functions of volumetric plastic strain; and J, is the gecond invariant of the
deviatoric stress, i.e.

Jy =8:8/2.
The yield surface gradient @ results to be

Q = 2(tro — 4) 8 + Bs. (5.2)
— Ottosen [22] stated the four parameter yield function

= AJyf + 3V Toffe + Btrojf, —1=0 (5.3)

where the parameters 4, B are taken as functions of a hardening parameter and f, is the uniaxial
compression resistance. Moreover, 1 is a function of the stress invariant angle of similarity

P = 1 cos™1 M ) (5.4)
3 2J312

where J; = det s is the third deviatoric stress invariant. Here, for the sake of simplicity, 4 will
be considered constant, i.e. a three-parameter model is adopted. Note that, when 4 = 0, the
Drucker/Prager yield criterion is recovered. The tensor  is now

Q = BY/f, + [4)72 + 4/(21. V7)) s. (8.5)
— Bresler and Pister [23] presanted the three-parameter yield function
f = Btro/(3fo) + V2Jo/5/f. — Oltr a/(9f5) — 4 =10 (5.6)

where A4, B and C depend on amount of hardening. Also in this case the Drucker/Prager model
is obtained when € = 0. The tensor @ is now

Q = [B/(3/) — 20 tr o/(9f)]8 + s/(/.V107,). ®7)
In all cases (5.2), (5.5) and (5.7) the tensor Q is expressible in the form
Q=ab + fs (5.8)

where « and § are functions of plastic strain hardening parameters and possibly of the stress
invariants tr ¢ and J,.

Let us exclude the cases of infinite solutions for the inclination of the band. In this way the
generality is not lost because the critical hardening modulus is anyway given by (3.8) or (3.12).
For the three models presented, the inclination of the band is given by (3.7) (if admissible) or
(3.11). The critical hardening modulus is therefore the maximum between the two cases of an
inclined shear band, (3.8), and of a splitting mode band orthogonal to a principal stress axis,
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(3.12). Making use of (4.8), (3.8) gives

G 1
H'= (L4 max {szi” — 4+ Bs) (o + ﬂsk)] (3.9)
=LII,III —_—
corresponding to the inclination
o EEBAENF2Asbmm) o e 5.10)

26(si — 7)
When the inclination of the band is given by (3.11), the hardening modulus (3.12) becomes

H'= max {— 26 [l 4 Bse)® + Q1 4 ) (2 + Bsi - Bs;)

. k=1ILIIL 1—v
4 20(x + Bsp) (& + Bs;) +(x + 138;)2]} (5.11)

where the maximization refers to every permutation of indices 4, k£ in the range I to III. The
critical hardening modulus is the major one among the two given by (5.9) and (5.11), and the
inclination of the band is given by the corresponding equations (5.10) or (3.11).

6 Conclusions

The critical hardening modulus for the localization and inclination of the discontinuity band has
been obtained for a class of non-associative flow rules. The procedure provides simple de-coupled
expressions equivalent to the condition of singularity of the acoustic tensor. The conditions for
the occurrence of the localization modes corresponding to a shear or a splitting discontinuity are
discussed. Reference is made to a simple associative elastoplastic model. Applications are finally
performed with reference to three yield functions modelling pressure sensitive, dilatant or com-
pactant, elastoplastic materials.
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