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Abstract

Localization of deformation is analyzed in elastic±plastic solids endowed with elastic
anisotropy and non-associative ¯ow rules. A particular form of elastic anisotropy is
considered, for which the localization analysis can be performed with reference to an

elastic±plastic solid endowed with isotropic elasticity but whose normals to the yield
function and plastic potential are not coaxial. On the other hand, so far, available
analytical solutions for the onset of strain localization in elastic±plastic solids assume

isotropic elasticity and coaxial plastic properties. Here, a new analytical solution is
presented when the plastic normals are not coaxial but the analysis is restricted to plane
strain and plane stress loadings. As an illustration, for a material with transverse elastic

isotropy and with pressure-dependent yield surface and plastic potential, this solution
provides explicit expressions at the onset of strain localization for the plastic modulus, for
the orientation of the shear-band and for the slip mode. The numerical results highlight the
importance of the coupled in¯uence of elastic anisotropy and non-associativity on the onset

of strain localization. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Localization of deformation in elastic±plastic solids is a phenomenon known
from both analytical and experimental points of view. From the latter perspective,
there is a clear evidence that shear-band failure is greatly in¯uenced by the
anisotropic character of material properties, e.g. Boehler (1987), Gibson and
Ashby (1988). Restricting attention to elastoplasticity, anisotropy may result from
elastic behavior and/or from plastic behavior. Despite its theoretical and practical
signi®cance, investigations on the e�ects of anisotropy on strain localization are
scarce. Steinmann et al. (1994) ®nd a relevant e�ect of plastic orthotropy in plane
strain and plane stress strain localization. A similar analysis, including the e�ects
of plastic spin, is performed by Lee et al. (1995). Systematic experiments on an
anisotropic sandstone were performed and interpreted by Millien (1993). Loret
and Rizzi (1997a, 1997b) and Rizzi and Loret (1997) analyze, separately, both
e�ects of elastic and plastic anisotropy on strain localization. They ®nd that both
these e�ects may play an important role and highlight the di�culty but the
importance in obtaining analytical solutions to the maximization problem
involved in the determination of the onset of strain localization. In fact, contrary
to the situation pertaining to isotropy, the objective function for this
maximization problem becomes ¯at in the presence of anisotropy, while precise
results are important for comparison with experiments.

Recently, Bigoni and Loret (1999) established a device that reduces the search
of the onset of strain localization in materials with a particular type of elastic
anisotropy to a problem on a transformed material endowed with elastic isotropy.
This anisotropy is based on the concept of second-order fabric tensor and has a
physical motivation related to the e�ects of phase interfaces, void or microcracks
patterns (Valanis, 1990; Zysset and Curnier, 1995). However, the transformed
normals to the yield function and plastic potential may not be coaxial even when
the original tensors are. The associative ¯ow rule is a remarkable exception, and
examples in Bigoni and Loret (1999) were, in fact, restricted to that circumstance.
Therefore, a solution for localization of deformation, based on elastic isotropy,
but accounting for non-coaxiality of plastic properties is required to make fully
operative the device established by Bigoni and Loret (1999). Such a solution is
obtained in the present article, under the restrictive hypotheses that the
transformed normals to the yield function and the plastic potentials share a
common eigenvector, and that strain localization occurs in a planar band
orthogonal to this eigenvector. This hypothesis has the inconvenience that any
out-of-plane localization is a priori disregarded. However, it is quite common
both for plane strain loadings, e.g. Hill and Hutchinson (1975), Needleman (1979),
Hutchinson and Tvergaard (1981), Steinmann et al. (1994) and for the analysis of
thin sheets in plane stress, Hill (1952), Thomas (1961), StoÈ ren and Rice (1975),
Petryk and Thermann (1996). The solution for strain localization obtained in this
paper is therefore, in the ®rst place, a generalization of earlier solutions that
assume elastic isotropy and coaxiality of plastic properties, e.g. Bigoni and
Hueckel (1991). Moreover, coupled to the Bigoni and Loret's device, it allows for
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explicit solutions of the onset of strain localization for materials endowed with
elastic anisotropy of the Valanis±Zysset±Curnier type. It applies to a broad range
of material behaviors, including any form of yield function and plastic potential
gradients and, obviously, even in the absence of elastic anisotropy, when the
plastic properties are non-coaxial, a situation not uncommon in geomechanics. In
the examples, we assume transverse elastic isotropy and yield functions and plastic
potentials of the Drucker±Prager type with deviatoric associativity. Even if this
choice is mainly dictated by simplicity, we remark that the model may be useful
for the analysis of porous or high-strength metals, Needleman and Rice (1978),
structural ceramics, Chen and Reyes-Morel (1986), concretes and rocks.
Moreover, the results show that, at variance with the situation relative to elastic
isotropy and coaxiality, where at least two shear-bands become simultaneously
possible when the hardening modulus reaches a critical value, only one shear-band
usually forms in the presence of elastic anisotropy or non-coaxiality. This fact,
which apparently passed unnoticed until the present work, may seem surprising at
a ®rst glance. It is linked to the fact that non-coaxiality introduces more
directional degrees of freedom, and, correlatively, allows for less symmetrical
solutions.

The paper is organized as follows. Reduced elastic±plastic constitutive
equations for plane stress are deduced from three-dimensional constitutive
equations in Section 2. The strain localization problem and the correspondence
principle are formulated in Section 3 for both the three-dimensional and the
plane problems. Then, the solution for the onset of localization for both plane
strain and plane stress loadings is obtained in explicit form for materials with
elastic anisotropy of the Valanis±Zysset±Curnier type. Speci®c examples are
presented in Section 4.

1.1. Notation

Sym denotes the set of symmetric second-order tensors, bold roman letters
denote vectors and second-order tensors, capital letters are used for the latter, for
instance, I is the second-order identity tensor. The scalar and the tensorial
products of two vectors or second-order tensors are designated by symbols � and

, respectively. The Euclidean norm of tensors and vectors is denoted by k � k and
tr is the trace operator. We de®ne coaxiality of two symmetric second-order
tensors, A, B, by the commutation property AB=BA. The special tensorial
product 
 is de®ned in such a way that, to any given triplet of arbitrary second-
order tensors A, B and C, the fourth-order tensor A 
 B associates to C the
tensorÿ

A
B
��C� � 1

2

ÿ
ACBT � ACTBT

�
, �1�

the superimposed symbol ���T denoting the transpose of the quantity over which it
applies.
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2. Constitutive equations

2.1. Three-dimensional constitutive equations

Rate elastic±plastic constitutive equations linking the strain rate ÇE to the stress
rate ÇT and valid in the small strain range are derived from the following
assumptions.

A1. Additive decomposition of total strain into an elastic part and a plastic
part:

E � Ee � Ep: �2�
A2. Elastic law de®ned by the constant fourth-order elastic tensor E:

T � E�Ee �: �3�
A3. Yield function de®ned in terms of the state variables, namely stress T and
K, a generic set of internal variables of arbitrary tensorial nature:

f�T, K�E0: �4�
A4. Plastic ¯ow rule in terms of P 2 Sym, the ¯ow mode tensor:

ÇE
p � _LP, �5�

where _Lr0 is the non-negative plastic multiplier.
A5. Hardening law:

_K � _L �K, �6�
where �K is a continuous function of the state variables.

Continuous plastic ¯ow implies the consistency condition,

_f�T, K� � Q � ÇT� _L
@f

@K
� �K � 0, �7�

where Q � @ f=@T is the yield function gradient and A5 has been used. Employing
now A1, A2 and A4 in Eq. (7), the plastic multiplier can be obtained as

_L � 1

H
Q � E

�
ÇE
�
, �8�

where the plastic modulus H > 0, assumed to be strictly positive, is related to the
hardening modulus h,

h � ÿ @ f

@K
� �K, �9�

through
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H � h� he with he � Q � E�P�: �10�
Therefore, the rate constitutive equations take the usual form

ÇT �

8><>:E
�

ÇE
�
ÿ 1

H
hQ � E

�
ÇE
�
iE�P� if f�T, K� � 0

E
�

ÇE
�

if f�T, K� < 0,

�11�

where the operator h�i associates to any scalar a the value hai � maxfa, 0g:
In the special case of deviatoric associativity, where the non-associativity is

restricted to the volumetric parts of P and Q, we introduce the decompositions

P � cos w ÃS� sin w���
3
p I, Q � cos c ÃS� sin c���

3
p I, �12�

where Ŝ 2 Sym is traceless and of unit norm. The angular parameters c and w
describe the pressure-sensitivity and the plastic dilatancy of the material,
respectively.

The usual hypothesis of elastic isotropy consists in identifying the elastic tensor
E in Eq. (3) with Eiso

Eiso � lI
 I� 2mI
I, �13�
where l and m are the LameÂ constants, and the tensorial product 
 has been
de®ned in the notation section.

Starting from Eq. (13), Valanis (1990) and Zysset and Curnier (1995) introduce
elastic anisotropy through

E � lB
 B� 2mB
B, �14�
where the second-order symmetric tensor B is a fabric tensor, assumed to be
positive de®nite and with ®xed norm, tr B2 � 3: This tensor can be written as

B � gI�G, �15�
where G is a second-order, symmetric, traceless tensor and, due to the positive
de®niteness and normalization of B, the scalar g ranges within ]0, 1], in particular
g2 � 1ÿ tr G2=3: With B positive de®nite, the necessary and su�cient conditions
for positive de®niteness and strong ellipticity of E turn out to be the same as for
the isotropic reference Eiso, i.e. fm > 0 and 3l� 2m > 0g and fm > 0 and
l� 2m > 0g, respectively. The elastic constitutive equation (14) involves four scalar
parameters, namely l, m, and two of the three eigenvalues of B, in addition to the
eigenvectors bi, i 2 �1, 3�, of B playing the role of orthotropy directions. The
particular form of elastic anisotropy de®ned by Eq. (14) corresponds to a special
orthotropic material when the spectrum of B is separated, to a special transversely
isotropic material when two eigenvalues of B are coincident, and to a fully
isotropic material when B=I. The interested reader may ®nd a detailed discussion
in Bigoni and Loret (1999).
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2.2. Plane stress constitutive equations

Cartesian axes �e1, e2, e3� are chosen in such a way that the axis e3 is aligned
with an orthotropy axis. Then,

B �
X2
a, b�1

babea 
 eb � b3e3 
 e3: �16�

Here and in the sequel, greek subscripts refer to in-plane components.
A special state of plane stress is de®ned, in which the traction and its rate

vanish on the symmetry plane �e1, e2),

Te3 � 0, �17a�

ÇTe3 � 0: �17b�

2.2.1. Reduced elastic constitutive equations
For a purely elastic deformation de®ned by Eq. (3), representation (16) and the

plane stress condition (17a) constrain the out-of-plane components of stress and
strain as follows

Ta3 � T33 � 0, �18a�

Ea3 � 0 �18b�

E33 � ÿ l
l� 2m

1

b3

X2
a, b�1

babEab �18c�

Substitution of the out-of-plane strain E33 in the three-dimensional equations (3)
yields the reduced in-plane constitutive equations that involve in-plane
components of stress and strain only:

Tab � lR

0@ X2
g, d�1

bgdEgd

1Abab � 2m
X2
g, d�1

bagEgdbdb, �19�

in terms of the reduced LameÂ modulus lR,

lR � 2lm
l� 2m

�20�

If we de®ne the in-plane restriction AR of any generic second-order tensor A 2
Sym as
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AR �
X2
a, b�1

Aabea 
 eb, �21�

then the reduced elastic constitutive equations (19) may be rewritten as

TR � lR�BR � ER �BR � 2mBRERBR, �22�
or, equivalently, in the compact form

TR � ER�ER �, �23�
where ER is the reduced elastic tensor,

ER � lRBR 
 BR � 2mBR
BR: �24�
The usual isotropic reduced equations are recovered when BR � IR:

2.2.2. Reduced elastic±plastic constitutive equations
The particularization of the elastic-plastic rate constitutive equations (11) to

plane stress can be obtained in di�erent ways. The simplest one is to re-derive
these equations from A1±A5. In particular, we note that

Q � ÇT � Q � ÇT
R � QR � ÇT

R � QR � ER
�

ÇE
R ÿ _LPR

�
: �25�

Therefore, the consistency condition _f�TR, K� � 0 yields the plastic multiplier _L as

_L � 1

H R
hQR � ER

�
ÇE

R
�
i, �26�

and the reduced rate constitutive equations can be cast in the same format as the
three-dimensional ones (11), indeed,

ÇT
R �

8><>:ER
�

ÇE
R
�
ÿ 1

H R
hQR � ER

�
ÇE

R
�
iER�PR � if f

ÿ
TR, K

�
� 0,

ER
�

ÇE
R
�

if f
ÿ
TR, K

�
< 0

, �27�

where H R is a reduced modulus,

H R � h� hR
e with hR

e � QR � ER�PR �: �28�
Satisfaction of the vanishing traction rate (17b) yields the out-of-plane
components of the strain rate in terms of their in-plane counterparts. Indeed, Eq.
(17b) implies relations similar to Eqs. (18b) and (18c) for the elastic strain rates,
namely,

_E
e

a3 � 0, _E
e

33 � ÿ
l

l� 2m
1

b3

X2
a, b�1

bab _E
e

ab: �29�
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Therefore, the out-of-plane components of the strain rate can be expressed in
terms of the plastic multiplier _L (26), and hence in terms of _E

R
,

_Ea3 � _LPa3, _E33 � ÿ l
l� 2m

1

b3
BR �

ÿ
ÇE

R ÿ _LPR
�
� _LP33: �30�

3. Strain localization

Even in the presence of elastic anisotropy, strain localization can be viewed as
the spontaneous emergence of a stationary discontinuity, where the acoustic tensor
®rst becomes singular. However, analytical solutions to the maximization problem
that yields the critical hardening modulus and shear-band directions are not
available in general. Nevertheless, for the special anisotropic structure de®ned by
Eq. (14), Bigoni and Loret (1999) have shown that a corrrespondence principle
exists, according to which strain localization in the elastic-plastic material de®ned
by the properties �E, P, Q� occurs simultaneously with strain localization in the
material de®ned by the transformed properties �Eiso, ÄP, ÄQ). When the transformed
directions ÄP and ÄQ are coaxial, the results available for materials with elastic
isotropy can be used (Rudnicki and Rice, 1975; Bigoni and Hueckel, 1991;
Needleman and Ortiz, 1991). However, within a few noticeable exceptions, ÄP and
ÄQ are not coaxial in general. Therefore, full exploitation of the correspondence
principle asks for new analytical solutions to the onset of strain localization for
materials with elastic isotropy but non-coaxial plastic properties.

This section ®rst recalls brie¯y the correspondence principle established by
Bigoni and Loret (1999) in a general three-dimensional context. Next, the strain
localization problem is reconsidered in a plane stress context and it is shown that
the correspondence principle still formally holds. Finally, analytical solutions to
the onset of strain localization are provided in both plane strain and plane stress
contexts for coaxial and non-coaxial transformed plastic properties ÄP and ÄQ:

3.1. Three-dimensional and plane strain formulation

Strain localization may be viewed as the spontaneous emergence of a strain rate
discontinuity of dyadic form ( ÇE) in a thin shear-band of normal n

( ÇE) � 1

2
�g
 n� n
 g�, with g �

X3
i�1

giei, and n �
X3
i�1

niei: �31�

Continuity of the traction rate across the band, namely ( ÇT)n � 0, requires that,
for the amplitude of the discontinuity g to be non zero, the elastic±plastic acoustic
tensor be singular for at least one direction n,

det Aep�n� � 0: �32�
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The elastic±plastic acoustic tensor corresponding to the loading branch of the
constitutive operator is de®ned as

Aep�n� � Ae�n� ÿ 1

rH
E�P�n
 E�Q�n: �33�

Here r is the mass density and, denoting with X any symmetric second-order
tensor,

E�X�n � l�B � X�Bn� 2mBXBn: �34�
To establish Eq. (32), plastic loading is assumed to take place both inside and
outside the shear-band. The elastic acoustic tensor Ae appearing in Eq. (33),

Ae�n� � l� m
r

Bn
 Bn� m
r
�n � Bn�B, �35�

is invertible since the elastic tensor E is assumed to be positive de®nite (over the
space of second-order symmetric tensors), and therefore strongly elliptic, with
inverse Aÿ1e �n�,

Aÿ1e �n� � ÿ
r
m

l� m
l� 2m

n
 n

�n � Bn�2
� r

m
Bÿ1

n � Bn
: �36�

For B=I, Ae�n� reduces to Aiso
e �n� associated to Eiso,

Aiso
e �n� �

l� m
r

n
 n� m
r

I: �37�

With reference to a loading program in which the hardening modulus is a
decreasing, continuous function of some loading parameter, condition (32) may be
expressed in terms of a critical hardening modulus, solution of the constrained
maximization problem:

hcrit � max
knk�1

h�n� with h�n� � E�Q�n � Aÿ1e �n�E�P�nÿ he: �38�

When the hardening modulus reaches the critical value (38) and for a critical
direction n making the elastic±plastic acoustic tensor singular, the direction of the
eigenvector g de®ning the shear mode in Eq. (31) is given by

g0Aÿ1e �n�p�n� with p�n� � E�P�n: �39�
The correspondence principle established by Bigoni and Loret (1999) starts from a
rewriting of the elastic-plastic acoustic tensor in the format,

Aep�n� � �n � Bn�B1=2Aiso
ep
� Än�B1=2, �40�

where Aiso
ep � Än�
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Aiso
ep
� Än� � Aiso

e
� Än� ÿ 1

rH
Eiso

�
ÄP
�

Än
 Eiso
�

ÄQ
�

Än, �41�

is the elastic±plastic acoustic tensor associated to the material de®ned by the
reference elastic tensor Eiso and transformed plastic directions ÄP and ÄQ and
estimated at the transformed direction Än,

ÄP � B1=2PB1=2, �42a�

ÄQ � B1=2QB1=2 �42b�

Än � B1=2n

kB1=2nk �42c�

The usual de®nition of the square root of the positive-de®nite tensor B has been
used, namely,

B � B1=2B1=2, B1=2 �
X3
i�1

����
bi

p
bi 
 bi, �43�

where the bi's, bi > 0, i 2 �1, 3�, denote the eigenvalues and the bi's, i 2 �1, 3�, the
eigenvectors of B as already mentioned in Section 2.1. Note that the hardening
modulus is form invariant in Eq. (41), so that

H � h�Q � E�P� � h� ÄQ � Eiso
�

ÄP
�
: �44�

The relation (40) implies that singularity of Aep�n� is equivalent to singularity of
Aiso

ep � Än�: Therefore, strain localization may be analyzed with reference to Aiso
ep � Än�:

However, ÄP and ÄQ, Eq. (42), are in general not coaxial: among exceptions, let us
notice associativity P=Q, or the case where P, Q and B are coaxial.

3.2. Plane stress formulation

The analysis of localized necking in thin sheets performed by Hill (1952),
Thomas (1961) and StoÈ ren and Rice (1975), presents di�erences with the general
three-dimensional analysis of strain localization presented above. Only the reduced
part of the strain rate discontinuity is assumed to be of dyadic form,

( ÇE
R) � 1

2

ÿ
gR 
 nR � nR 
 gR

�
, with gR �

X2
a�1

gaea, and nR �
X2
a�1

naea, �45�

that is, the shear-band is a priori assumed to be orthogonal to the out-of-plane
direction e3: Repeating the previous analysis using the plane stress reduced
constitutive equations, it turns out that satisfaction of the continuity of the in-
plane components of the traction rate across the shear-band is expressed by the
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reduced elastic±plastic acoustic tensor

AR
ep
�nR � � AR

e
�nR � ÿ 1

rH R
ER�PR �nR 
 ER

�
QR
�
nR, �46�

involving the reduced elastic acoustic tensor AR
e �n�,

AR
e
�nR � � lR � m

r
BRnR 
 BRnR � m

r
�nR � BRnR �BR: �47�

It should be noted that the reduced acoustic tensors (46) and (47) are formally
similar to their three-dimensional counterparts (33) and (35), respectively, with l
replaced by lR: Therefore, the correspondence principle (40)±(44) holds for plane
stress provided that all quantities appearing in these relations be replaced by their
reduced counterparts, namely B4BR, l4lR, P4PR, Q4QR, n4nR:

Notice that the traction rate continuity across the shear-band is fully ensured
since the traction rate constraint (17b) implies the out-of-plane components of the
stress-rate to vanish. However, the discontinuity of the strain rate ( ÇE) is, in
general, not of a dyadic form unless for some special values of the out-of-plane
components of the plastic potential, see Eq. (30). Also, notice that, in contrast to
the plane strain formulation, plane-stress allows for a relative thickening/
shortening of the material inside the shear-band since _E33, Eq. (30), does not
vanish in general. However, this e�ect is not accounted for in the rate equilibrium
equations in the present small strain analysis.

3.3. Explicit solution

The maximization problem (38) is now explicitly solved for an elastic±plastic
solid having non-coaxial plastic characteristics ÄP and ÄQ, under the assumption
that ÄP and ÄQ have a common eigenvector, say Äp3 � Äq3 � e3, to which the band
normal is constrained to remain orthogonal. The analysis embraces both plane
strain and plane stress cases: the former corresponds to the value 1 and the latter
to the value 0 of the parameter d. If Äpi and Äqi, i 2 �1, 3�, denote the eigenvectors of
ÄP and ÄQ, respectively, ÄP and ÄQ have the following spectral representation,

ÄP � ~P1 Äp1 
 Äp1 � ~P2 Äp2 
 Äp2 � ~P3 Äp3 
 Äp3,

ÄQ � ~Q1 Äq1 
 Äq1 � ~Q2 Äq2 
 Äq2 � ~Q3 Äq3 
 Äq3, �48�
where by convention j ~P1jrj ~P2j, j ~Q1jrj ~Q2j and Äp1 � Äq1 > 0 so that the non-
coaxiality angle g � angle� Äq1, Äp1�=2 belongs to ]ÿ458, 458[ (see Fig. 1). In order to
account for the symmetry of the modulus to be maximized with respect to ÄP and
ÄQ, we operate in axes �Är1, Är2� that respect this symmetry (Fig. 1),

Är1 �
Äq1 � Äp1

k Äq1 � Äp1k
, Är2 �

Äq2 � Äp2

k Äq2 � Äp2k
�49�
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In these axes, the normal and tangent to the shear-band are de®ned by the angle ~y
�angle�Är1, Än�, namely (Fig. 1),

Än � cos ~y Är1 � sin ~y Är2, Ät � ÿsin ~y Är1 � cos ~y Är2: �50�

Using the correspondence principle, the onset of localization will be obtained by
maximization of the modulus

h� Än� � Eiso
�

ÄQ
�

Än � Aisoÿ1
e
� Än�Eiso

�
ÄP
�

Änÿ he, �51�

that is, in terms of Poisson's ratio of the elastic reference solid n � l=2�l� m� and
of d,

h� Än�
m
� 2n

1ÿ d n
ÿ

Än � ÄQÄn tr ÄP� Än � ÄP Än tr ÄQÿ tr ÄP tr ÄQ
�
ÿ 2�1� n�

1ÿ d n2
� Än � ÄPÄn�

�
ÿ

Än � ÄQÄn
�
� 4 ÄQÄn � ÄPÄnÿ 2 ÄP � ÄQ:

�52�

Expressing the reduced parts of ÄP and ÄQ in the axes � Än, Ät� yields

h
ÿ
~y
�

m
� ÿ2�1� n�

1ÿ d n2
h
�Ät � ÄPÄt�

ÿ
Ät � ÄQÄt

�
� d ~P3

~Q3 � dn
�
�Ät � ÄPÄt� ~Q3 �

ÿ
Ät � ÄQÄt

�
~P3

�i
: �53�

The function h � h�~y� is continous, has continuous derivative and it is periodic
with period p: Therefore, the maximization of h � h�~y� just needs to consider its
stationary points over any interval of length p: The condition of stationarity
simpli®es to

A sin 2
ÿ
~y� g

�
� B sin 2

ÿ
~yÿ g

�
ÿ C sin 4~y � 0, �54�

where

Fig. 1. Directions in the transformed space: Äp1, Äq1 eigendirections of ÄP and ÄQ, respectively, Är1 bisectrix

of � Äp1, Äq1), Än band normal and Ät tangential unit vector.
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A �
ÿ

~Q1 ÿ ~Q2

�ÿ
~P1 � ~P2 � 2nd ~P3

�
B �

ÿ
~P1 ÿ ~P2

��
~Q1 � ~Q2 � 2nd ~Q3

�
C �

ÿ
~P1 ÿ ~P2

�ÿ
~Q1 ÿ ~Q2

�
: �55�

When C 6� 0, the stationary condition (54) simpli®es to

a sin 2~y� b cos 2~yÿ sin 2~y cos 2~y � 0, �56�
where

a � A� B

2C
cos�2g�, b � Aÿ B

2C
sin�2g�: �57�

The angles that maximize h are to be found among the following candidates
(modulo p):

Case 1. C � 0

. if ~P1 ÿ ~P2 � 0, � ~Q1ÿ ~Q2�� ~P1�dn ~P3� 6� 0, ~y�ÿg, ÿg� 908;

. if ~Q1 ÿ ~Q2 � 0, � ~P1ÿ ~P2�� ~Q1�dn ~Q3� 6� 0, ~y�g, g� 908;

. if f ~P1ÿ ~P2�0, � ~Q1ÿ ~Q2�� ~P1�dn ~P3��0g

or if

n
~Q1 ÿ ~Q2 � 0,

ÿ
~P1 ÿ ~P2

��
~Q1 � dn ~Q3

�
� 0

o
, ~y arbitrary; �58�

Case 2. C 6� 0

. if b � 0, ~y � 08, 908 and 2�cosÿ1 a�=2 if ÿ 1 < a < 1;

. if b 6� 0, ~y real roots of the polynomial

F
ÿ
~y
�
� tan4 ~yÿ 2

1� a

b
tan3 ~y� 2

1ÿ a

b
tan ~yÿ 1

Coaxiality, namely g � 08, implies critical shear-bands normals to be symmetric
with respect to the working axes, which then coincide with the in-plane principal
axes of ÄP and ÄQ: In contrast, when b 6� 0, the above fourth-order polynomial is
not even in ~y, so that in general we expect only one shear-band at the onset of
strain localization, instead of the two as in the usual coaxial case. Since F�~y� is
obtained by manipulation of Eq. (56), it may be shown that the number of its real
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solutions in [08, 1808[ is equal to 4, 3 or 2 depending whether a2=3 � b2=3 is
smaller, equal or larger than 1, respectively. Finally, since Eq. (53) is periodic,
continuous with continuous derivative and de®ned on the real axis, two
stationarity points correspond to a maximum and a minimum and three
stationarity points to a maximum, minimum and a saddle point.

4. Applications

The procedure described above is now illustrated in particular situations of
plane strain and plane stress loadings. Let the stress tensor to have the spectral
representation

T �
X3
i�1

siti 
 ti with js1jrjs2j: �59�

The out-of-plane axis e3 is a principal stress direction, say e3 � t3, so that the
remaining principal axes of stress, t1 and t2, lie in the plane �e1, e2). For both
plane strain and plane stress, the normals to the shear-bands are assumed to
belong to the plane �e1, e2), so that the results of Section 3 apply. In this
introductory section, all formulae are a priori presented for the plane strain case;
results for the plane stress case can be recovered replacing all tensorial quantities
by their reduced counterparts, as de®ned by Eq. (21).

The analysis is restricted to the simplest possible context, in particular we
assume transverse isotropic elasticity about axis b, lying in the plane �e1, e2� and
inclined to an angle ys 2 �08, 908� with respect to t1, namely (see Fig. 2)

b � cos yst1 ÿ sin yst2: �60�

Fig. 2. Directions in physical space: b axis of elastic symmetry, t1 and t2 principal stress axes and

eigenvectors of P and Q, n band normal and t tangential unit vector.
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The fabric tensor B can be cast in the following format,

B � b1b
 b� b2�Iÿ b
 b�, �61�
where, due to the normalization tr B2 � 3, the eigenvalues b1 and b2 may be
written as functions of a single angular parameter b̂, ranging within ]08,908[ to
ensure positive de®niteness of B:

b1 �
���
3
p

cos b̂, b2 �
����
3

2

r
sin b̂: �62�

Isotropic elasticity corresponds to b1 � b2 � 1 or b̂ � b̂iso154:748: The situation
b̂ < b̂iso corresponds to a material whose modulus is greater in the direction of
material symmetry b and it is typical of a ®ber reinforced material. On the other
hand, b̂ > b̂iso is representative of a layered system.

It is useful to record the expression in the traction reference system of the fabric
tensor raised to an arbitrary power m:

Bm �

2664 bm1 cos2 ys � bm2 sin2 ys
ÿ
bm2 ÿ bm1

�
sin yscos ys 0ÿ

bm2 ÿ bm1
�
sin yscos ys bm1 sin2 ys � bm2 cos2 ys 0

0 0 bm2

3775
�t1, t2, t3 �

: �63�

Notice that, when B is singular, i.e. for b̂ � 08 and b̂ � 908, both the elastic tensor
E and the acoustic elastic tensor Ae are singular: then positive de®niteness and
strong ellipticity are lost simultaneously and the procedure to capture the onset of
strain localization exposed here does not hold any longer.

When the yield function and plastic potential are of the Drucker±Prager type
and satisfy deviatoric associativity (12), then the principal axes of ÃS, P and Q are
the principal stress axes since the unit-norm stress deviator ÃS is equal toP3

i�1 Ŝiti 
 ti with

Ŝ1 � s

�
2ÿ s2

s1
ÿ s3

s1

�
, Ŝ2 � s

�
ÿ 1� 2

s2
s1
ÿ s3

s1

�
,

Ŝ3 � s

�
ÿ 1ÿ s2

s1
� 2

s3
s1

�
,

�64�

in which

s � sign�s1 ����
6
p

"�
s2
s1

�2

�
�
s3
s1

�2

ÿs2
s1

s3
s1
ÿ s2

s1
ÿ s3

s1
� 1

#ÿ1=2
: �65�

Also P�P3
i�1 Piti 
 ti with Pi�cos wŜi� sin w=

���
3
p

and a similar formula holds for
Q with c in place of w:

The transformed directions ÄP and ÄQ are obtained by pre- and post-
multiplication by B1=2, namely in the stress principal axes,
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ÄP � B1=2PB1=2

�

2666664
�
B1=2

11

�2
P1 �

�
B1=2

12

�2
P2 B1=2

12

�
B1=2

11 P1 � B1=2
22 P2

�
0

B1=2
12

�
B1=2

11 P1 � B1=2
22 P2

� �
B1=2

22

�2
P2 �

�
B1=2

12

�2
P1 0

0 0 b2P3

3777775
�t1, t2, t3 �

�66�
where the B1=2

ij 's are estimated from Eq. (63) for m � 1=2: Calculation of the
critical plastic modulus at the onset of strain localization hcrit and of the critical
band normal(s) can be now performed through the following steps:

. provide elastic parameters n, b̂, ys, plastic parameters w, c, loading parameters
s2=s1, s3=s1 and the sign of s1;

. screen the real solutions ~y, Eq. (58), giving the extrema of the hardening
modulus h, Eq. (52), to retain only the critical one(s) that correspond(s) to the
maximum;

. use the critical direction(s) Än � Än�~y�, Eq. (50), together with Eqs. (42c) and (63)
with m � ÿ1=2 to retrieve the critical band direction(s) n de®ned in stress
principal axes by the angle(s) yn � �t1, n�, that is (see Fig. 2)

n � cos ynt1 � sin ynt2: �67�

Non-coaxiality between the transformed directions ÄP and ÄQ requires non-
coaxiality between ÃS and B, indeed

ÄP ÄQÿ ÄQ ÄP � 1���
3
p sin�cÿ w�B1=2

ÿ
ÃSBÿ BÃS

�
B1=2, �68�

which, using Eq. (63) for m � 1=2 and m � 1 and Eq. (64), simpli®es to

ÄP ÄQÿ ÄQ ÄP � s

�
s2
s1
ÿ 1

�
sin�cÿ w�sin yscos ys�b1 ÿ b2 �

���������
b1b2

p
�t1 
 t2 ÿ t2


 t1�: �69�

Therefore, coaxiality is recovered when at least one of the following conditions is
met:

. associative plasticity, w � c;

. isotropic elasticity, b1 � b2;

. the in-plane principal axes of the stress tensor are aligned with the in-plane
principal axes of the fabric tensor, that is ys � 08 or 908, or the in-plane stress
is isotropic, that is s2 � s1;

. limit of non-positive de®nite elasticity, b1 � 0 or b2 � 0:
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4.1. Plane strain

In order to analyze strain localization, the current state should be known.
However, in plane strain loading, the out-of-plane stress is in general known only
when a hardening function is given and the constitutive rate equations are
integrated for a prescribed loading path. There are no conceptual di�culties in
doing this for a given constitutive model, but we prefer to retain generality and
perform a parametric analysis for given values of out-of-plane stresses. In this
way, results are independent of the choice of the hardening rule. We consider two
particular loading paths, namely, pure shear and uniaxial (in-plane) compression.

4.1.1. Pure shear
We restrict the analysis here to the special situation where pure shear can be

maintained in conditions of plane strain loading. This avoids any consideration of
the out-of-plane stresses which remain null.

Pure shear corresponds to s1 > 0, s2 � ÿs1 and s3 � 0: For plane strain, E33 is
zero, a condition which veri®es for the elastic law (14) and (61) when n � 0 or
ys � 458 or b1 � b2: For the elastoplastic law (11) and (12) and under the above
conditions, the out-of-plane stress remains null for isochoric plastic ¯ow, w � 08:
In this case, therefore, plane strain loading is equivalent to plane stress. However,
the strain localization analysis may give di�erent results in the two cases. Let us
analyze this point in detail. From Eq. (53), it may be concluded that strain
localization coincides in plane stress and plane strain when n � 0 and ~P3

~Q3 � 0:
This coincidence occurs in pure shear when n � 0, but if ys � 458 or b1 � b2 while
n 6� 0, the localization characteristics are not identical for plane strain and plane
stress, even if the out-of-plane stress is zero in both cases. The crux lies in
di�erent kinematic assumptions regarding the strain localization analysis: in plane
stress, the out-of-plane kinematic compatibility is usually violated whereas, in
plane strain, it is not, see Section 3.2.

The normalized critical hardening modulus hcrit=m and angle yn � angle �t1, n�
which de®nes the band normal versus the fabric angle b̂ are presented in Fig. 3,
for n � 0, and for three anisotropy directions ys � 108, 458, 808. Critical
hardening moduli are reported in Fig. 3(a) and (c) and band inclinations in
Fig. 3(b) and (d). Fig. 3(a) and (b), pertain to c � 308 and w � 08, whereas
Fig. 3(c) and (d) pertain to c � 158 and w � 08:

In contrast to associative plasticity, it may be remarked that the critical
hardening moduli are positive. Moreover, the curves have a qualitative trend
similar for all anisotropy inclinations ys and friction angle c, compare Fig. 3(a)
and (c). Note also that, for isotropic elasticity, all curves reach a common value.
In the two limits corresponding to the boundaries of positive de®niteness of B Ð
and, consequently, of the elastic tensor Ð the critical hardening moduli vanish.

As expected from the analysis, Fig. 3(b) and (d) displays only one shear-band,
except in the isotropic case b̂154:748: In this case, two shear-bands form
simultaneously, with inclinations corresponding to the left and right limits of the
graphs at the isotropy point. Moreover, the band inclination tends to be rather
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insensitive to both the anisotropy characteristics, b̂ and ys: Once more, we
emphasize that all values reported in Fig. 3 are also fully pertinent to plane stress.

In Fig. 4, referred to c � 308 and w � 08, four di�erent values of Poisson's ratio
n � 0, 0:3, 0:4, 0:49 are considered, and the inclination ys � 458 is assumed ®xed.
Fig. 4 shows that Poisson's ratio has a strong quantitative in¯uence on the critical
hardening modulus, whereas the band inclination remains almost una�ected.

4.1.2. Uniaxial, plane-strain compression
In the case of uniaxial, plane strain compression, s2 � 0, the value of s3=s1 is

Fig. 3. Strain localization for a non-associated Drucker±Prager solid with transverse isotropy described

by the angle b̂ and subjected to pure shear. Results are reported for n � 0, c � 308 and 158, w � 08:
Di�erent inclinations ys for the anisotropy axis are considered. (a, c) Normalized critical hardening

modulus; (b, d) Inclination angle yn � angle �t1, n� of band normal. Since ys 6� 08, 908, there is a single

shear-band except for isotropy b̂ � b̂iso:
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determined by the complete history of loading up to the current state. Therefore,
this parameter crucially depends on the functional form of the hardening law. To
retain generality, we present a parametric analysis in which s3=s1 is selected equal
to four particular values: 0, 1, 0.5, corresponding to an out-of-plane stress equal
to the intermediate principal stress, and the value corresponding to the out-plane
stress yielded by the elastic law

s3
s1
� n� n

�
b1
b2
ÿ 1

�
cos2 ys: �70�

The latter two values of s3=s1 are considered representative of large isochoric
plastic deformation, Needleman and Rice (1978), and small plastic deformation
with high hardening. It should be noted that Eq. (70) gives an in®nite stress in the
limit case b̂ � 908: This re¯ects the in®nite degree of anisotropy of the material.
However, the investigation is restricted to less severe degrees of anisotropy, say
b̂ 2�0, 708�, which ensures an out-of-plane stress in the elastic range intermediate
between s1 and s2 � 0: Moreover, we assume w � 08, i.e. no plastic dilatancy, and
c � 308: Fig. 5 refers to the three values ys � 108, 458, and 808, respectively. The
above-mentioned four values of s3=s1, namely 0, 0.5, 1 and `elastic', are
considered. The normalized critical hardening modulus is plotted against the
fabric angle b̂ in Fig. 5(a), (c) and (e), whereas Fig. 5(b), (d) and (f) refer to the
band inclination yn: The ®gures show that the critical hardening modulus is
strongly a�ected by the value of the out-of-plane stress, particularly, the curves

Fig. 4. Strain localization for a non-associated Drucker±Prager solid with transverse isotropy described

by the angle b̂ and subjected to pure shear. Results are reported for ys � 458, c � 308 and w � 08:
Di�erent values of Poisson's ratio are considered. (a) Normalized critical hardening modulus; (b)

Inclination angle yn � angle�t1, n� of band normal. Since ys 6� 08, 908, there is a single shear-band

except for isotropy b̂ � b̂iso:
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Fig. 5. Strain localization for a non-associated Drucker±Prager solid with transverse isotropy described

by the angle b̂ and subjected to plane strain, uniaxial compression. Results are reported for n � 0:3,
c � 308 and w � 08 and di�erent inclinations ys: Di�erent values of out-of-plane stress, parameter

s3=s1, are considered. (a, c, e) Normalized critical hardening modulus; (b, d, f) Inclination angle

yn � angle�t1, n� of band normal. Since ys 6� 08, 908, there is a single shear-band except for isotropy

b̂ � b̂iso:
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corresponding to s3 � 0 di�er remarkably from the others. As a general
conclusion, the shear-band inclinations are much less a�ected.

Another interesting behavior is observed in the limit b̂ � 08, where all critical
moduli vanish, except that relative to ys � 458 and s3 � 0: Moreover, regarding
the speci®c curve not approaching zero at b̂ � 08, there is another feature hidden
in the graph. In the last few decimals of degree close to the limit, the critical
hardening modulus hcrit for strain localization is positive, but the critical plastic
modulus H crit is not. This means that close to the limit b̂ � 08 localization is not
possible for positive plastic moduli.

Fig. 6. Strain localization for a non-associated Drucker±Prager solid with c � 308 and w � 08, with

transverse isotropy described by the angle b̂ and subjected to plane stress, uniaxial tension. Di�erent

inclinations ys � angle�b, t1� are considered. (a, c) Normalized critical hardening modulus; (b, d)

Inclination angle yn � angle�t1, n� of band normal. In the presence of elastic anisotropy, b̂ 6� b̂iso, a

single critical shear-band exists when the traction axis is neither orthogonal nor parallel to the bedding

plane, namely ys 6� 08, 908; otherwise, two shear-bands symmetric with respect to the traction axis are

available. In all cases, the angle (shear-band, axis t2� remains approximatively equal to 308.

D. Bigoni et al. / J. Mech. Phys. Solids 48 (2000) 1441±1466 1461



This peculiar situation merits a detailed explanation. In the limit b̂ � 08, tensor
B is singular, and the whole localization analysis presented in Section 3 breaks
down. To investigate the limit, let us recall that then B � ���

3
p

b
 b, and so

B1=2 ÃSB
1=2 �

���
3
p X

a�1, 2
Ŝa�b � ta�2b
 b: �71�

Consequently, ~Q3 � ~P3 � 0 and Eq. (53) becomes

h
ÿ
~y
�

m
� ÿ 6

1ÿ n
sin4 ~y �b � Pb��b �Qb�: �72�

Eq. (72) yields hcrit � 0 when �b � Pb��b �Qb� > 0: On the other hand, when
�b � Pb��b �Qb� < 0, then hcrit > 0, corresponding to ~y � 908, but in this case
H crit < 0 results for n > 0, as he � 3�l� 2m��b � Pb��b �Qb�: This occurs in the
speci®c cases of uniaxial compression s1 < 0, for ys � 458, s3=s1 equal to 0 and
to the `elastic' value. In all other cases reported in Figs. 3±5, the critical hardening
modulus vanishes at b̂ � 08, as predicted by Eq. (72).

4.2. Plane stress

Note that, for plane stress loading, the analytical solution (53) yields the ratio
hcrit=E independent of Poisson's ratio, with E � 2�1� n�m Young's modulus. Fig. 6
pertains to the case of uniaxial traction with a zero dilatancy angle, w � 08, and a
friction angle c equal to 308. Results for smaller c are qualitatively similar.
Notice that the critical moduli are always positive. When ÄP and ÄQ are not coaxial,
there exists only one critical shear-band more aligned with the reinforced
direction, that is with b � b1 if b1 > b2, i.e. b̂ < b̂iso and with b � b2 otherwise.
For coaxial ÄP and ÄQ, namely isotropic elasticity, b̂ � b̂iso, and b parallel or
orthogonal to the traction axis, ys � 08 and 908, respectively, there exist two
shear-bands symmetric with respect to the traction axis. Whether single or not, the
bands make an angle roughly equal to 2608 with the traction axis, see Fig. 6(b)
and (d).

This feature, namely existence of a single or of two bands, is also illustrated in
Fig. 7 where the e�ect of loading biaxiality s2=s1 is depicted. Three anisotropies
de®ned by b̂ � 108, 54:768 and 808 are investigated. For each anisotropy, three
directions ys � 308,458 and 608 are shown, the cases ys � 08 and 908 have been
omitted as the existence of two shear-bands would require separate plots. Some
speci®c biaxiality ratios can be detailed.

The pure shear case s2=s1 � ÿ1 was already explored in Section 4.1.1. For
equi-biaxial loading s2=s1 � 1, the critical hardening modulus solution of Eq. (53)
is

hcrit

E
� ÿ1

2

ÿ
cos w�

���
2
p

sin w
� ÿ

cos c�
���
2
p

sin c
�

min

�
cos2 b̂,

1

2
sin2 b̂

�
: �73�

D. Bigoni et al. / J. Mech. Phys. Solids 48 (2000) 1441±14661462



Fig. 7. Strain localization for a non-associated Drucker±Prager solid with c � 308 and w � 08,
subjected to plane stress, biaxial loading with s1 > 0: Di�erent inclinations ys � angle�b, t1� are

considered for three elastic anisotropies de®ned by b̂: (a, c, e) Normalized critical hardening modulus;

(b, d, f) Inclination angle yn � 908 of shear-band. As ys 6� 08, 908, there is a single shear-band except

for isotropy b̂ � b̂iso: For s2=s1 < 1=2, the direction of the shear-band is virtually una�ected by ys and

the angle (shear-band, minor traction axis t2� is smaller than 308. At s2=s1 � 1=2, the shear-band is

orthogonal to the major traction axis t1:
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The shear-band is parallel to the bedding planes for ®ber-reinforced materials,
b̂ < b̂iso, so-called structural failure in geology, e.g. Millien (1993), and it is
orthogonal to the bedding planes for layered systems, b̂ > b̂iso, so-called
a-structural failure. The opposite trend is observed for pure shear. Actually, for
equi-biaxial loading, the axis t1 is arbitrary and the angle yn in Fig. 7 should be
understood as angle �b, n� ÿ ys:

For w � 08, it is interesting to note that the critical hardening moduli for strain
localization change sign at s2=s1 � 1=2: In fact then, Ät � ÄQÄt is positive for any
directions Ät and Ät � ÄPÄt is always positive as well, except for a direction Ät whose
back-transformed t is parallel to b2, that is yn � 908 � 908, Fig. 7(b) and (f). For
isotropic elasticity, Fig. 7(c) and (d), there exist two shear-bands symmetric with
respect to the traction axis for biaxiality ratios s2=s1 up to �1ÿ ����������

3=23
p �=210:32,

and the associated critical modulus is equal to 1=24
���
3
p

10:024 independently of
s2=s1: For larger values of the biaxiality ratio, the two shear-bands coalesce into a
single band orthogonal to the traction direction t1 (recall js1jrjs2j� and the
critical moduli fall to values much lower than in the presence of anisotropy.

As a general trend, one can also show that the bifurcated eigenmodes g, that is
the shear modes, change from quasi-pure shear at s2=s1 � ÿ1 to quasi-Mode I at
s2=s1 � 1=2, and this quasi-Mode I stands for higher biaxiality ratios.

5. Conclusions

A particular form of elastic anisotropy has been investigated in strain
localization analysis of elastoplastic solids. Although the employed elastic
anisotropy is very speci®c, it is thought to display su�cient degrees of freedom to
be able to capture the inherent and damage-induced anisotropy of many
engineering materials. Nevertheless, speci®c identi®cations for both cases need to
be developed. As it has been stressed throughout the paper, this type of
anisotropy presents an interesting structure for the analysis of the onset of strain
localization, since it allows to rephrase the problem in terms of a ®ctitious
transformed material endowed with isotropic elasticity but, in general, with non-
coaxial normals to the yield surface and plastic potential, Bigoni and Loret (1999).
The non-coaxiality properties depend on the deviation from associativity, on the
form of elastic anisotropy and of biaxiality of loading.

Since so far available solutions for the onset of strain localization assume elastic
isotropy and coaxial plastic properties, new results for non-coaxial plasticity are
required to exploit the correspondence principle. This paper presents a ®rst step in
this direction. Although restricted to plane stress and plane strain situations, it
paves the way for the investigation of more realistic mechanical situations of
interest, such as the analysis of thin sheets. In order to highlight the coupled
e�ects of non-normality and elastic anisotropy, the constitutive equations used in
the examples are rather like prototypes. The solutions for the onset of localization
obtained here can be applied to more elaborated material models, provided
experiments are available to identify the involved parameters. But further work is
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required to obtain three-dimensional analytical solutions for elastic isotropy and
non-coaxial plastic properties: besides being a result by itself, this would allow to
fully exploit the correspondence principle of Bigoni and Loret (1999).
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