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Abstract

Starting from a Cauchy elastic composite with a dilute suspension of randomly dis-
tributed inclusions and characterized at first-order by a certain discrepancy tensor (see part
I of the present article), it is shown that the equivalent second-gradient Mindlin elastic
solid: (i.) is positive definite only when the discrepancy tensor is negative defined; (ii.) the
non-local material symmetries are the same of the discrepancy tensor, and (iii.) the non-
local effective behaviour is affected by the shape of the RVE, which does not influence the
first-order homogenized response. Furthermore, explicit derivations of non-local parameters
from heterogeneous Cauchy elastic composites are obtained in the particular cases of: (a)
circular cylindrical and spherical isotropic inclusions embedded in an isotropic matrix, (b)
n-polygonal cylindrical voids in an isotropic matrix, and (c) circular cylindrical voids in an
orthortropic matrix.

Keywords: Dilute distribution of spherical and circular inclusions; n-polygonal holes; Higher-
order elasticity; Effective non-local continuum; Composite materials.

1 Introduction

In part I of the present study (Bacca et al., 2013), a methodology has been presented to obtain
an equivalent second-order Mindlin elastic material (Mindlin and Eshel, 1968), starting from
a dilute suspension of randomly distributed elastic inclusions embedded in an elastic matrix,
under symmetry assumptions for both the RVE and the inclusion. In particular, by imposing
the vanishing of the elastic energy mismatch G between the heterogeneous Cauchy elastic and
the Mindlin equivalent materials produced by the same second-order displacement boundary
condition, the equivalent second gradient elastic (SGE) solid has been found to be defined (at
first-order in the volume fraction f ≪ 1 of the inclusion phase) by the sixth-order tensor

A
eq
ijhlmn = −f

ρ2

4

(

C̃ihlnδjm + C̃ihmnδjl + C̃jhlnδim + C̃jhmnδil

)

, (1)

∗Corresponding author
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where ρ is the radius of the sphere (or circle in 2D) of inertia of the RVE, and the discrep-
ancy tensor C̃ is introduced to define at the first-order in f the difference between the local
constitutive tensors for the effective material Ceq and the matrix C

(1), so that

C
eq = C

(1) + f C̃. (2)

Note that Aeq is zero either when the inclusions are not present, f = 0, or when the inclusion
has the same elastic properties of the matrix, C̃ = 0.

In the present part II of our study it is shown (Section 2) that the nonlocal material identified
via second-order match of elastic energies through the constitutive tensor (1): (i.) is positive
definite if and only if the discrepancy tensor is negative defined; (ii.) shares the same material
symmetries with the discrepancy tensor (obtained as homogenized material at first-order); (iii.)
is affected by the RVE shape, differently from the homogenized response at first-order. More-
over, a series of examples useful in view of applications are provided in Section 3, in particular,
the material constants defining the nonlocal behaviour are explicitly obtained for dilute sus-
pensions of isotropic elastic circular cylindrical inclusions, of cylindrical voids with n-polygonal
cross section and of spherical elastic inclusions embedded in an isotropic matrix, and for dilute
suspension of cylindrical voids with circular cross section distributed in an orthortropic matrix.

2 Some properties of the effective SGE solid

Some properties of the effective SGE solid are obtained below from the definition of the effective
higher-order constitutive tensor Aeq, eqn (1).

2.1 Heterogeneous Cauchy RVE leading to positive definite equivalent SGE

material

Statement. For constituents characterized by a positive definite strain energy, a positive
definite equivalent SGE material is obtained if and only if the first-order discrepancy tensor C̃
is negative definite.

Proof. For constituents characterized by a positive definite strain energy, the first-order ho-
mogenization always leads to a positive definite equivalent fourth-order tensor C

eq, so that a
positive strain energy (see eqn (9) in Part I) is stored within the equivalent SGE material if
and only if

A
eq
ijhlmnχijhχlmn > 0 ∀χ 6= 0 with χijk = χjik, (3)

where the summation convention over repeated indices is used henceforth. Considering the form
(1) of Aeq (note the ‘−’ sign), a positive definite equivalent SGE material is obtained when

C̃ijhkχlijχlhk < 0 ∀χ 6= 0 with χijk = χjik. (4)

Since the discrepancy tensor has the minor symmetries, C̃ijhk = C̃jihk = C̃ijkh, the condition
(4) can be written as

C̃ijhk(χlij + χlji)(χlhk + χlkh) < 0 ∀χ 6= 0 with χijk = χjik, (5)

which corresponds to the negative definite condition for the fourth-order constitutive tensor C̃,
because χlij + χlji = 0 if and only if χ = 0.1 �

1The last statement can be proven as follows. With reference to a third-order tensor ςijk, symmetric with
respect to the first two indices (ςijk = ςjik), we define the tensor γijk as

γijk = ςijk + ςikj , (6)
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The fact that the equivalent nonlocal material is positive definite only for ‘sufficiently com-
pliant’ inclusions was already noted by Bigoni and Drugan (2007) for Cosserat constrained
rotation material and is related to the fact that higher-order continua are stiffer than Cauchy
elastic materials (imposing boundary conditions on displacement and on its normal derivative).
This effect has also an experimental counterpart provided by Gauthier (1982), who showed mi-
cropolar effects for porous material, but ‘anti-micropolar’ behaviour for a soft matrix containing
stiff inclusions.

2.2 Higher-order material symmetries for the equivalent SGE solid

Statement. The higher-order material symmetries of the equivalent SGE solid coincide with
the material symmetries of the first-order discrepancy tensor C̃.

Proof. A class of material symmetry corresponds to indifference of a constitutive equation
with respect to application of a class of orthogonal transformations represented through an
orthogonal tensorQ, so that an higher-order material symmetry for the equivalent SGE material
occurs when

A
eq
ijhlmn = QipQjqQhrQlsQmtQnuA

eq
pqrstu, (8)

while for the first-order discrepancy tensor when

C̃ijhk = QipQjqQhrQksC̃pqrs. (9)

Considering the property of orthogonal transformations (QQT = I ), the solution (1) for
A

eq and that this can be inverted as

C̃ihlnδjm = − 1

f

[

A
eq
ijhlmn + A

eq
jhimnl + A

eq
hijnlm − A

eq
ijhnlm − A

eq
hijlmn

+A
eq
ijhmnl + A

eq
jhilmn − A

eq
jhinlm − A

eq
hijmnl

]

,
(10)

it follows that the symmetry condition for the effective higher-order tensor A
eq, eqn (8), is

equivalent to that for the first-order discrepancy tensor C̃, eqn (9).2�

2.3 Influence of the volume and shape of the RVE on the higher-order con-

stitutive response

In addition to the dependence on the shape of the inclusion, typical of first-order homogeniza-
tion, the representation (1) of Aeq shows that the higher-order constitutive response in the dilute
case depends on the volume and the shape of the RVE through its radius of inertia ρ. This
feature distinguishes second-order homogenization from first-order, since in the latter case C

eq

in the dilute case is independent of the volume and shape of the RVE. Therefore, two composite

resulting symmetric with respect to the last two indices (γijk = γikj). Relation (6) is invertible, so that

ςijk =
γijk + γjki − γkij

2
, (7)

and therefore γ = 0 if and only if ς = 0.
2Note that isotropic discrepancy at first-order (namely isotropic C̃) implies isotropy of the strain-gradient

equivalent material Aeq. On the other hand, it is known from a numerical example by Auffray et al. (2010)
that a Cauchy composite material with an hexagonal symmetry can yield a nonlocal anisotropic response. Their
example, not referred to a dilute suspension, is not in direct contrast with the results presented here.
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materials M and N differing only in the geometrical distribution of the inclusions correspond
to the same equivalent local tensor C

eq(M) = C
eq(N ), but lead to a different higher-order

equivalent tensor Aeq(M) 6= A
eq(N ).

An example in 2D is reported in Fig. 1 where the hexagonal RVE (N ) compared to the
squared RVE (M) yields

A
eq(M) =

3
√
3

5
A

eq(N ) ∼ 1.039Aeq(N ), (11)

while in the 3D example reported in Fig. 2 a truncated-octahedral RVE (N ) is compared to a
cubic RVE (M) yielding

A
eq(M) =

16 3
√
2

19
A

eq(N ) ∼ 1.061Aeq(N ). (12)

Figure 1: Two-phase RVEs differing only in the shape of the boundary, namely M and N . In the dilute
limit, both composites are characterized by the same equivalent local tensor, Ceq(M) = C

eq(N ), but by different
higher-order equivalent tensors, Aeq(M) 6= A

eq(N ), see eqn (11).

Figure 2: Similarly to Fig. 1, two RVEs M (cubic RVE) and N (truncated-octahedral RVE) leading to the same
equivalent local tensor, Ceq(M) = C

eq(N ), but to different higher-order equivalent tensors, Aeq(M) 6= A
eq(N ),

see eqn (12).

The fact that different shapes of the RVE yield, through their radii of inertia, different
nonlocal properties is inherent to the proposed identification procedure. However, this effect is
small –as shown by the estimates (11) and (12)– and has to be understood under the light of
the dilute assumption for a random distribution of inclusions, so that the choice of the shape
of the RVE is to a certain extent limited.

3 Application cases

Several applications of eqn (1) are presented in this Section for composites of different geometries
and constitutive properties. Situations in which the homogenized material results isotropic are
first considered and finally some cases of anisotropic behaviour are presented.
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3.1 Equivalent isotropic SGE

For an isotropic composite, the first-order discrepancy tensor C̃ is

C̃
iso

ijhk = λ̃δijδhk + µ̃(δihδjk + δikδjh), (13)

so that the equivalent sixth-order tensor Aeq, eqn (1), is given by

A
eq
ijhlmn = −f

ρ2

4

{

λ̃ [δih (δjlδmn + δjmδln) + δjh (δilδmn + δimδln)]

+µ̃ [2 (δilδjm + δimδjl) δhn + δin (δjlδhm + δjmδhl) + δjn (δilδhm + δimδhl)]} ,
(14)

which is a special case of isotropic sixth-order tensor

A
iso
ijhlmn =

a1
2

[δij (δhlδmn + δhmδln) + δlm (δinδjh + δihδjn)]

+
a2
2

[δih (δjlδmn + δjmδln) + δjh (δilδmn + δimδln)]

+2 a3 (δijδhnδlm) + a4 (δilδjm + δimδjl) δhn

+
a5
2

[δin (δjlδhm + δjmδhl) + δjn (δilδhm + δimδhl)] ,

(15)

with the following constants

a1 = a3 = 0, a2 = −f
ρ2

2
λ̃, a4 = a5 = −f

ρ2

2
µ̃. (16)

The related strain energy is positive definite when parameters ai (i = 1, ..., 5) satisfy eqn
(18) of Part I, which for the values (16) implies

K̃ < 0, µ̃ < 0, (17)

where K̃ is the bulk modulus, equal to λ̃+2µ̃/3 in 3D and λ̃+µ̃ in plane strain, and corresponding
to the negative definiteness condition for C̃, according to our previous results (Section 2.1).

An explicit evaluation of the constants (a2, a4 = a5) is given now, in the case when an
isotropic fourth-order tensor C̃ is obtained from homogenization of a RVE with both isotropic
phases, matrix denoted by ‘1’ (with Lamé constants λ1 and µ1) and inclusion denoted by ‘2’
(with Lamé constants λ2 and µ2), having a shape leading to an isotropic equivalent constitutive
tensor

C
eq
ijhk = λeqδijδhk + µeq(δihδjk + δikδjh), (18)

where
λeq = λ1 + fλ̃, µeq = µ1 + fµ̃, Keq = K1 + fK̃. (19)

In particular, the following forms of inclusions are considered within an isotropic matrix.

• For 3D deformation:

– spherical elastic inclusions.

• For plane strain:

– circular elastic inclusions;
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– regular n-polygonal holes with n 6= 4 (the case n = 4 leads to an orthotropic material
and is treated in the next subsection).

For all of the above cases it is shown that a positive definite equivalent SGE material, eqn
(17), is obtained only when the inclusion phase is ‘softer’ than the matrix in terms of both shear
and bulk moduli,

µ2 < µ1, K2 < K1, (20)

which is always satisfied when the inclusions are voids. The positive definiteness condition (20)
can be written in terms of the ratio µ2/µ1 and the Poisson’s ratio of the phases ν1 and ν2 [where
νi = λi/(2(λi + µi))] as

µ2

µ1
< min

{

1;
1− 2ν2
1− 2ν1

}

, (21)

for the case of plane strain, and

µ2

µ1
< min

{

1;
(1 + ν1)(1− 2ν2)

(1 + ν2)(1− 2ν1)

}

, (22)

for three-dimensional case. The regions where a positive definite SGE material is obtained, eqns
(21) - (22), are mapped in the plane µ2/µ1 – ν1 for different values of the inclusion Poisson’s
ratio ν2 (Fig. 3, plane strain on the left and 3D-deformation on the right).

Figure 3: Regions in the plane µ2/µ1 – ν1 where the higher-order effective constitutive tensor A
eq is positive

definite (for different values of ν2). The regions for the plane strain case, eqn (21), are reported on the left, while
the case of three-dimensional deformations, eqn (22), is reported on the right.
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Cylindrical elastic inclusions The elastic constants Keq and µeq of the isotropic material
equivalent to a dilute suspension of parallel isotropic cylindrical inclusions embedded in an
isotropic matrix have been obtained by Hashin and Rosen (1964), in our notation

K̃ =
(K2 −K1)(K1 + µ1)

K2 + µ1
, µ̃ =

2µ1(µ2 − µ1)(K1 + µ1)

2µ1µ2 +K1(µ1 + µ2)
. (23)

Exploiting equation (16), the equivalent higher-order constants ai (i = 1, ..., 5) can be
obtained from the first-order discrepancy quantities, eqn (23), so that the non-null constants
are evaluated as

a2 = f
ρ2

2

[

(K1 −K2)(K1 + µ1)

K2 + µ1
− 2µ1(µ1 − µ2)(K1 + µ1)

2µ1µ2 +K1(µ1 + µ2)

]

,

a4 = a5 = fρ2
µ1(µ1 − µ2)(K1 + µ1)

2µ1µ2 +K1(µ1 + µ2)
.

(24)

The higher-order equivalent constants a2 and a4 given by eqn (24) are reported in Figs. 4 and
5 as functions of the ratio µ2/µ1 and for different Poisson’s ratios of matrix and inclusion. In
all the figures, a red spot denotes the threshold for which the strain energy of the equivalent
material looses positive definiteness. The dashed curves refer to regions where this positive
definiteness is lost.

With reference to Fig. 4, we may note that a2 → ∞ in the limit ν1 → 1/2. Furthermore, a4
is not affected by the Poisson’s ratio of the inclusion ν2, except that the threshold for positive
definiteness condition for the equivalent material strain energy changes, eqn (21).

Spherical elastic inclusions The equivalent elastic constants Keq and µeq of the isotropic
material equivalent to a dilute suspension of isotropic spherical inclusions within an isotropic
matrix have been obtained by Eshelby (1957) and independently by Hashin (1959), in our
notation

K̃ =
(3K1 + 4µ1)(K2 −K1)

3K2 + 4µ1
, µ̃ =

5µ1(µ2 − µ1)(3K1 + 4µ1)

µ1(3K1 + 4µ2) + 2(3K1 + 4µ1)(µ2 + µ1)
, (25)

so that, through equation (16), the non-null equivalent higher-order constants are given by

a2 = f
ρ2

2

[

(3K1 + 4µ1)(K2 −K1)

3K2 + 4µ1
− 2

3

5µ1(µ2 − µ1)(3K1 + 4µ1)

µ1(3K1 + 4µ2) + 2(3K1 + 4µ1)(µ2 + µ1)

]

,

a4 = a5 = f
ρ2

2

5µ1(µ2 − µ1)(3K1 + 4µ1)

µ1(3K1 + 4µ2) + 2(3K1 + 4µ1)(µ2 + µ1)
,

(26)

which are reported in Fig. 6 and Fig. 7 as a function of the shear stiffness ratio µ2/µ1 and for
different Poisson’s ratios of the phases. In these figures the curves become dashed when the
strain energy of the equivalent material looses positive definiteness. Moreover, the higher-order
constants are reported in Fig. 8 as functions of the matrix Poisson’s ratio ν1 in the particular
case of spherical voids.

Similar to the case of cylindrical elastic inclusions, a2 → ∞ in the limit ν1 → 1/2 and a4 is
not affected by the Poisson’s ratio of the inclusion ν2, except for the threshold of strain energy’s
positive definiteness, eqn. (22).
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Figure 4: Higher-order equivalent constant a2, eqn (24)1, of the SGE solid equivalent to a composite made up
of an isotropic matrix containing a diluite suspension of cylindrical elastic inclusions, as a function of the ratio
µ2/µ1, for different values of the Poisson’s ratio of the phases {ν1, ν2} ={-0,5;-0.25;0;0.4}. The constant a2 is
made dimensionless through division by parameter fρ2µ1. The curves are dashed where the strain energy of the
equivalent material is not positive definite, a red spot marks where the loss of positive definiteness occurs.

Regular n-polygonal holes (n 6=4) The elastic constants µeq and Keq of the isotropic
material equivalent to a dilute suspension of n-polygonal holes (n 6=4) in an isotropic matrix
have been obtained by Jasiuk et al. (1994) and Thorpe et al. (1995), from which the first-order
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Figure 5: Higher-order equivalent constant a4 = a5, eqn (24)2, of the SGE solid equivalent to a composite made
up of an isotropic matrix containing a dilute suspension of cylindrical elastic inclusions, as a function of the ratio
µ2/µ1, for different values of Poisson’s ratio of the phases {ν1, ν2} ={-0,5;-0.25;0;0.4}. The constant a4 is made
dimensionless through division by parameter fρ2µ1. Note that the curves are not affected by the Poisson’s ratio
of the inclusion ν2, except that the threshold (red spot) for positive definiteness of the equivalent material strain
energy changes, eqn (21). Dashed curve represents values for which the strain energy of the equivalent material
is not positive definite.

discrepancy stiffness can be written in our notation as

K̃(n) = −A(n)[1− B(n)]K1 + µ1

µ1
K1, µ̃(n) = −A(n)[1 + B(n)]K1 + µ1

K1
µ1, (27)

9



Published in International Journal of Solids and Structures 50 (2013) 4020-4029
doi: http://dx.doi.org/10.1016/j.ijsolstr.2013.08.016

Figure 6: Higher-order equivalent constant a2, eqn (26)1, of the SGE solid equivalent to a composite made
up of an isotropic matrix containing a dilute suspension of spherical elastic inclusions as a function of the ratio
µ2/µ1, for different values of Poisson’s ratio of the phases {ν1, ν2} ={-0,5;-0.25;0;0.4}. The constant a2 is made
dimensionless through division by parameter fρ2µ1. The curves are dashed where the strain energy of the
equivalent material is not positive definite, a red spot marks where the loss of positive definiteness occurs.

where A(n) and B(n) are constants depending on the number of edges n of the regular polygonal
hole, which can be approximated through numerical computations, and are reported in Tab. 1
for n={3; 5; 6}. In the case of a regular polygon with infinite number of edges, in other words a

10



Published in International Journal of Solids and Structures 50 (2013) 4020-4029
doi: http://dx.doi.org/10.1016/j.ijsolstr.2013.08.016

Figure 7: Higher-order equivalent constant a4 = a5, eqn (26)2, of the SGE solid equivalent to a composite
made up of an isotropic matrix containing a dilute suspension of cylindrical elastic inclusions as a function of the
ratio µ2/µ1, for different values of Poisson’s ratio of the phases {ν1, ν2} ={-0,5;-0.25;0;0.4}. The constant a4 is
made dimensionless through division by parameter fρ2µ1. Note that the curves are not affected by the Poisson’s
ratio of the inclusion ν2, except that the threshold (red spot) for positive definiteness of the equivalent material
strain energy changes, eqn (22). Dashed curve represents values for which the strain energy of the equivalent
material is not positive definite.

circle, the value of the constants is A(n → ∞) = 3/2 and B(n → ∞) = 1/3, so that the case of a
cylindrical void inclusion is recovered, eqn (23) with µ2 = K2 = 0. The equivalent higher-order
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Figure 8: Higher-order equivalent constants a2 and a4 = a5 of the equivalent SGE material for a composite
made up of an isotropic matrix containing a dilute suspension of spherical voids as a function of the matrix
Poisson’s ratio ν1, eqn (26) with µ2 = K2 = 0. The constants are made dimensionless through division by
parameter fρ2µ1.

constants can be obtained from eqn (16) by using the first-order discrepancy quantities, eqn
(27), from which the non-null constants follow

a2 = f
ρ2

2
A(n)

{

[1− B(n)]K2
1 − [1 + B(n)]µ2

1

} K1 + µ1

µ1K1
,

a4 = a5 = f
ρ2

2
A(n)[1 + B(n)]K1 + µ1

K1
µ1,

(28)

and are shown in Fig. 9 as functions of the matrix Poisson’s ratio ν1.

Approximated values
Polygonal hole n A(n) B(n)

Triangle 3 2.1065 0.2295
Pentagon 5 1.6198 0.3233
Hexagon 6 1.5688 0.3288
Circle ∞ 3/2 1/3

Tab. 1: Values of the constants A(n) and B(n) for triangular (n = 3), pentagonal (n = 5), hexagonal (n = 6),
and circular (n → ∞) holes in an isotropic elastic matrix (Thorpe et al., 1995). These values are instrumental
to obtain the equivalent properties K̃(n) and µ̃(n), eqn (27), of the higher-order material.

3.2 Equivalent cubic SGE

When the first-order discrepancy tensor C̃ has a cubic symmetry, it can be represented in a
cartesian system aligned parallel to the symmetry axes as (see Thomas, 1966)
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Figure 9: Higher-order equivalent constants a2 and a4 = a5 of the equivalent SGE material for a dilute
suspension of triangular (n = 3), pentagonal (n = 5), hexagonal (n = 6), and circular (n → ∞) holes in an
isotropic matrix, as functions of the matrix Poisson’s ratio ν1, eqn (28). The constants are made dimensionless
through division by parameter fρ2µ1.

C̃
cub

ijhk = C̃
iso

ijhk + ξ̃ [(δi2δj3 + δi3δj2) (δh2δk3 + δh3δk2) + (δi1δj3 + δi3δj1) (δh1δk3 + δh3δk1)

+ (δi1δj2 + δi2δj1) (δh1δk2 + δh2δk1)] ,
(29)

where C̃
iso

is given by eqn (13). The sixth-order tensor A
eq for the equivalent material is

obtained using eqn (1) in the form

A
eq
ijhlmn = A

iso
ijhlmn +

a6
2

{(δi1δh2 + δi2δh1) [(δl1δn2 + δl2δn1) δjm + (δm1δn2 + δm2δn1) δjl]

+ (δj1δh2 + δj2δh1) [(δl1δn2 + δl2δn1) δim + (δm1δn2 + δm2δn1) δil]}

+(δi1δh3 + δi3δh1) [(δl1δn3 + δl3δn1) δjm + (δm1δn3 + δm3δn1) δjl]

+ (δj1δh3 + δj3δh1) [(δl1δn3 + δl3δn1) δim + (δm1δn3 + δm3δn1) δil]

+ (δi2δh3 + δi3δh2) [(δl2δn3 + δl3δn2) δjm + (δm2δn3 + δm3δn2) δjl]

+ (δj2δh3 + δj3δh2) [(δl2δn3 + δl3δn2) δim + (δm2δn3 + δm3δn2) δil]} ,
(30)

with A
iso given by eqn (15), parameters ai (i = 1, ..., 5) by eqn (16), and

a6 = −f
ρ2

2
ξ̃. (31)

According to results presented in subsections 2.1 and 2.2, the effective higher-order tensor
A

eq results to be a cubic sixth-order tensor and is positive definite when C̃, eqn (29), is negative
definite, namely, eqn (17) together with

ξ̃ + µ̃ < 0. (32)

Aligned square holes within an isotropic matrix There are no results available for the
plane strain homogenization of a dilute suspension of square holes distributed (with parallel
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edges) within an isotropic matrix. Therefore, we have compared with a conformal mapping
technique (Misseroni et al. 2013) stress and strain averages, and found the following discrepancy
at first-order in the constitutive quantities3

λ̃ = −(1.198K2
1 − 1.864µ2

1)
K1 + µ1

K1µ1
, µ̃ = −1.864

K1 + µ1

K1
µ1, ξ̃ = −0.796

K1 + µ1

K1
µ1,

(33)
showing that C̃ is negative definite, eqn (32), and therefore the corresponding effective higher-
order tensor Aeq, eqn (30), is positive definite.

The equivalent higher-order constants ai (i = 1, ..., 6) can be obtained from the first-order
discrepancy quantities, eqn (33), so that the non-null constants are evaluated by exploiting eqns
(16) and (31) as

a2 = fρ2 (0.599K2
1 − 0.932µ2

1)
K1 + µ1

K1µ1
,

a4 = a5 = 0.932fρ2
K1 + µ1

K1
µ1,

a6 = 0.398fρ2
K1 + µ1

K1
µ1.

(34)

These three independent constants are reported in Fig. 10 as functions of the matrix
Poisson’s ratio ν1.
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Figure 10: Higher-order equivalent constants a2, a4 = a5, and a6 of the equivalent SGE material for the plane
strain case of a dilute suspension of square holes (with parallel edges) in an isotropic matrix, as a function of the
matrix Poisson’s ratio ν1, eqn (34). The constants are made dimensionless through division by parameter fρ2µ1.

3Thorpe et al. (1995) give results for composites with a random orientation of square holes, so that the
effective behaviour is isotropic and given by eqn (27) with A(n = 4) = 1.738 and B(n = 4) = 0.306. This
isotropic effective response can be independently obtained by averaging the cubic effective response given by eqn
(33) over two orientations of the square hole differing by an angle π/4.
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3.3 Equivalent orthotropic SGE

When the first-order discrepancy tensor C̃ is orthotropic, it can be represented in a cartesian
system aligned parallel to the symmetry axes as (see Spencer, 1982)

C̃
orth

ijhk = C̃
iso

ijhk + ξ̃I (δi2δj3 + δi3δj2) (δh2δk3 + δh3δk2) + ξ̃II (δi1δj3 + δi3δj1) (δh1δk3 + δh3δk1)

+ξ̃III (δi1δj2 + δi2δj1) (δh1δk2 + δh2δk1) + ω̃Iδi1δj1δh1δk1 + ω̃IIδi3δj3δh3δk3

+ω̃III (δijδh3δk3 + δhkδi3δj3) + ω̃IV (δi1δj1δh3δk3 + δi3δj3δh1δk1) ,
(35)

where ξ̃III , ω̃I , ξ̃I , ξ̃II , ω̃II , ω̃III and ω̃IV are seven independent constants (in addition to λ̃
and µ̃) defining the orthotropic behaviour in 3D.4 The in-plane behaviour is defined by groups
of four independent constants, which for the x1–x2 plane are {λ̃; µ̃; ξ̃III ; ω̃I}.

In the case of orthotropic C̃, eqn (1) defining the sixth-order nonlocal tensor Aeq leads to

A
eq
ijhlmn = A

iso
ijhlmn +

a6
2

{(δi1δh2 + δi2δh1) [(δl1δn2 + δl2δn1) δjm + (δm1δn2 + δm2δn1) δjl]

+ (δj1δh2 + δj2δh1) [(δl1δn2 + δl2δn1) δim + (δm1δn2 + δm2δn1) δil]}

+
a7
2

{(δi1δh3 + δi3δh1) [(δl1δn3 + δl3δn1) δjm + (δm1δn3 + δm3δn1) δjl]

+ (δj1δh3 + δj3δh1) [(δl1δn3 + δl3δn1) δim + (δm1δn3 + δm3δn1) δil]}

+
a8
2

{(δi2δh3 + δi3δh2) [(δl2δn3 + δl3δn2) δjm + (δm2δn3 + δm3δn2) δjl]

+ (δj2δh3 + δj3δh2) [(δl2δn3 + δl3δn2) δim + (δm2δn3 + δm3δn2) δil]}

+
a9
2

[δi1 (δl1δjm + δm1δjl) + δj1 (δl1δim + δm1δil)] δh1δn1

+
a10
2

[δi3 (δl3δjm + δm3δjl) + δj3 (δl3δim + δm3δil)] δh3δn3

+
a11
2

{δh3 [δln (δjmδi3 + δimδj3) + δmn (δjlδi3 + δilδj3)]

+δn3 [δih (δjmδl3 + δjlδm3) + δjh (δimδl3 + δilδm3)]}

+
a12
2

{δh1δn3 [δi1 (δjmδl3 + δjlδm3) + δj1 (δimδl3 + δilδm3)]

δh3δn1 [δi3 (δjmδl1 + δjlδm1) + δj3 (δimδl1 + δilδm1)]} ,
(36)

with A
iso given by eqn (15), parameters ai (i = 1, ..., 5) by eqn (16), and

a6 = −f
ρ2

2
ξ̃III , a7 = −f

ρ2

2
ξ̃II , a8 = −f

ρ2

2
ξ̃I ,

a9 = −f
ρ2

2
ω̃I , a10 = −f

ρ2

2
ω̃II , a11 = −f

ρ2

2
ω̃III , a12 = −f

ρ2

2
ω̃IV ,

(37)

According to the results presented in subsections 2.1 and 2.2, the effective higher-order
tensor A

eq results to be an orthotropic sixth-order tensor, positive definite when C̃, eqn (35),

4Note that the cubic representation (29) is obtained as a particular case by setting ξ̃I = ξ̃II = ξ̃III = ξ̃ and
ω̃I = ω̃II = ω̃III = ω̃IV = 0.
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is negative definite, namely











































































µ̃+ ξ̃III < 0,

µ̃+ ξ̃II < 0,

µ̃+ ξ̃I < 0,

λ̃+ 2µ̃+ ω̃I < 0,

4µ̃(λ̃+ µ̃) + (λ̃+ 2µ̃)ω̃I < 0,

8µ̃3 − ω̃I ω̃III 2 + 4µ̃2(ω̃I + ω̃II + 2ω̃III) + λ̃
(

12µ̃2 + ω̃I ω̃II + 4µ̃(ω̃I + ω̃II − ω̃IV )− ω̃IV 2
)

−2µ̃
(

2ω̃III 2 − ω̃I(ω̃II + 2ω̃III) + 2ω̃III ω̃IV + ω̃IV 2
)

< 0,
(38)

while in the case of plane strain, conditions (38) become, in the x1–x2 plane



















µ̃+ ξ̃III < 0,

λ̃+ 2µ̃+ ω̃I < 0,

4µ̃(λ̃+ µ̃) + (λ̃+ 2µ̃)ω̃I < 0.

(39)

Orthotropic matrix with cylindrical holes We consider the plane strain of an orthotropic
matrix containing a dilute suspension of circular holes. In particular, assuming x3 as the out-
of-plane direction and x1 and x2 as the orthotropy axes, the discrepancy tensor has the form
(35) and is characterized by the following constants 5 (Tsukrov and Kachanov, 2000)

λ̃ =
γ(λ1 + 2µ1)

{[

(−1 + γ)2 − (1 + γ)δ
]

λ2
1 + 2 [2(−1 + γ)γ − (1 + γ)δ]λ1µ1 + 4γ2µ2

1

}

[(−1 + γ)λ1 + 2γµ1] (λ1 + γλ1 + 2γµ1)
,

µ̃ = − (λ1 + 2µ1)×
(

−1 + γ2
)

(−1 + γ − δ)λ2
1 + 2(−1 + γ)γ(2 + 2γ − δ)λ1µ1 + 4γ

(

γ + γ2 + δ
)

µ2
1

2 [(−1 + γ)λ1 + 2γµ1] (λ1 + γλ1 + 2γµ1)
,

ξ̃ = −µ̃− δ(1 + γ + δ)(λ1 + 2µ1) [(−1 + γ)λ1 + 2γµ1] (λ1 + γλ1 + 2γµ1)

[(−2 + 2γ − δ2)λ1 + 4γµ1 − 2δ2µ1]
2 .

ω̃ = −µ̃− γ (λ1 + 2µ1)×
(

−1 + γ2
)

(−1 + γ + γδ)λ2
1 + 2(−1 + γ) [δ + 2γ(1 + γ)(1 + δ)]λ1µ1 + 4γ2(1 + γ + γδ)µ2

1

2 [(−1 + γ)λ1 + 2γµ1] (λ1 + γλ1 + 2γµ1)
,

(40)

5For conciseness, in this subsection the in-plane orthotropy parameters ξIII and ωI are denoted by ξ and ω,
respectively, in the representation of both matrix and discrepancy quantities.

16



Published in International Journal of Solids and Structures 50 (2013) 4020-4029
doi: http://dx.doi.org/10.1016/j.ijsolstr.2013.08.016

where

γ =
√

Γ2 −∆, δ =

√

Γ +
√
∆+

√

Γ−
√
∆, Γ =

2µ1(µ1 + ω1) + λ1(µ1 − ξ1 + ω1)

(λ1 + 2µ1)(µ1 + ξ1)
,

∆ =
[−2ξ1(λ1 + 2µ1 + ξ1) + (λ1 + 2µ1)ω1][2µ1(µ1 + ω1) + λ1(2µ1 + ω1)]

(λ1 + 2µ1)2(µ1 + ξ1)2
.

(41)
The non-null constants a2, a4 = a5, a6, and a9 defining the effective higher-order tensor

A
eq can explicitly be evaluated using eqns (16) and (37), when a specific orthotropic matrix is

considered. With reference to orthotropic properties of olivine, pine wood, olivinite, marble,
and canine femora (which orthotropic constitutive parameters are reported in Tab. 2 for the
three possible orientations of orthotropy) used as matrix material, the corresponding non-null
higher-order constants are given in Tab. 3 for a dilute suspension of cylindrical holes with centers
aligned parallel to the in-plane orthotropy axes. All the three possible orientations (Or1, Or2,
Or3) are considered for the axis of the cylindrical inclusion, defining the out-of-plane direction
in the plane strain problem considered.

Matrix material Orientation λ1 µ1 ξ1 ω1

Olivine

Or1 66.000 47.000 −17.000 32.000

Or2 60.000 106.000 −75.000 −80.000

Or3 56.000 52.000 −27.500 112.000

Pine (softwood)

Or1 0.740 8.180 −7.590 −15.860

Or2 0.760 0.515 −0.476 −0.550

Or3 0.940 8.080 −7.625 −15.310

Olivinite

Or1 93.000 58.500 −21.85 22.000

Or2 92.000 53.500 −18.05 33.000

Or3 82.000 64.000 −29.7 −11.000

Marble

Or1 51.000 29.500 −14.65 9.000

Or2 52.000 26.000 −10.65 15.000

Or3 47.000 31.500 −15.2 −6.000

Canine femora

Or1 9.730 6.235 −2.900 −3.200

Or2 11.900 8.900 −6.065 −10.700

Or3 11.900 5.150 −2.815 7.500

Tab. 2: Values of the elastic constants λ1, µ1, ξ1, ω1 for different orthotropic materials, namely: olivine (Chevrot
and Browaeys, 2004), pine wood (Yamai, 1957), olivinite, marble (Aleksandrov, Ryzhove and Belikov, 1968), and
canine femora (Cowin and Van Buskirk, 1986). The reported values are in GPa.

4 Conclusions

Assuming Cauchy elastic composites made up of a dilute suspension of inclusions and an
RVE with a spherical ellipsoid of inertia, the equivalent higher-order constitutive behaviour
(of ‘Mindlin type’) can be defined in a rigorous way, even for anisotropy of the constituents
and complex shape of the inclusions. Through this procedure a perfect match of the elastic

17



Published in International Journal of Solids and Structures 50 (2013) 4020-4029
doi: http://dx.doi.org/10.1016/j.ijsolstr.2013.08.016

Matrix material Orientation
a2

fρ2µ1

a4
fρ2µ1

a6
fρ2µ1

a9
fρ2µ1

Olivine

Or1 2.426 1.661 3.077 −1.198

Or2 1.133 2.105 −1.014 −1.804

Or3 3.254 1.497 0.858 −0.780

Pine wood

Or1 0.269 3.789 −3.754 −3.737

Or2 10.297 3.551 −3.268 −3.497

Or3 0.142 3.478 −3.455 −3.399

Olivinite

Or1 3.119 1.644 −0.220 −1.045

Or2 4.398 1.414 0.804 −0.675

Or3 4.011 1.481 0.487 −0.782

Marble

Or1 4.023 1.629 −0.257 −1.068

Or2 5.866 1.389 0.823 −0.768

Or3 5.080 1.532 0.440 −1.015

Canine femora

Or1 8.279 1.219 2.465 −0.801

Or2 4.401 2.110 −1.875 −1.788

Or3 4.273 1.660 −0.690 −1.063

Tab. 3: Higher-order equivalent constants a2, a4 = a5, a6, and a9, eqns (16) and (37), of the orthotropic SGE
material equivalent to an orthotropic matrix containing a dilute suspension of cylindrical holes, collinear to three
possible orientations of orthotropy. The constants are made dimensionless through division by parameter fρ2µ1

and are reported for different matrices, which orthotropy parameters are given in Tab. 2.

energies of the RVE and of the equivalent higher-order material is obtained, for a general class
of displacements prescribed on the two respective boundaries. However, it has been shown
that, to achieve a positive definite strain energy of the equivalent higher-order material, the
inclusions have to be less stiff (in a way previously detailed) than the matrix, a situation al-
ready found by Bigoni and Drugan (2007) for Cosserat equivalent materials, which limits the
applicability of the presented results, but explains the interpretation of previous experiments
and results showing nonlocal effects for soft inclusions and ‘anti-micropolar’ behaviour for stiff
ones (Gauthier, 1982).
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