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Abstract

We show here the impact on the initial-boundary value problem, and on the
evolution of viscoelastic systems of the use of a new definition of state based on the
stress-response (see, e.g., [48, 16, 41]). Comparisons are made between this new
approach and the traditional one, which is based on the identification of histories
and states. We shall refer to a stress-response definition of state as the minimal state
[29]. Materials with memory and with relaxation are discussed.

The energetics of linear viscoelastic materials is revisited and new free ener-
gies, expressed in terms of the minimal state descriptor, are derived together with
the related dissipations. Furthermore, both the minimum and the maximum free
energy are recast in terms of the minimal state variable and the current strain.

The initial-boundary value problem governing the motion of a linear viscoelas-
tic body is re-stated in terms of the minimal state and the velocity field through
the principle of virtual power. The advantages are (i) the elimination of the need to
know the past-strain history at each point of the body, and (ii) the fact that initial
and boundary data can now be prescribed on a broader space than resulting from
the classical approach based on histories. These advantages are shown to lead to
natural results about well-posedness and stability of the motion.

Finally, we show how the evolution of a linear viscoelastic system can be de-
scribed through a strongly continuous semigroup of (linear) contraction operators
on an appropriate Hilbert space. The family of all solutions of the evolutionary
system, obtained by varying the initial data in such a space, is shown to have expo-
nentially decaying energy.

1. Introduction

In the classical approach to materials with memory, the state is identified with
the history of variables carrying information about the input processes. We show in
this paper how the notion of state given in [16, 41] (for the linear case), based on

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: Yes
     Embed Thumbnails: Yes
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 595 842 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: 
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice



Luca Deseri, Mauro Fabrizio & Murrough Golden

Noll’s definition of equivalent histories [48], is more convenient for application to
such materials. Indeed, Noll’s approach takes the material response as the basis for
such an equivalence, leading to the definition of state: if an arbitrary continuation
of different given histories leads to the same response of the material, then the given
histories are equivalent and the state is represented as the class of all the equivalent
histories. We shall refer to this definition of state as the minimal state [29].∗

The idea of minimal state was developed and applied in [41] to the case of
linear viscoelasticity with scalar relaxation functions given by a sum of exponen-
tials. A subsequent paper [16] presents a more comprehensive treatment in three
dimensions, and in the more general context of thermodynamically compatible
(tensor-valued) relaxation functions, taking into account the weak regularity of
histories and processes.

For such materials, the past strain history Et (s)
(
s ∈ IR++) and the current

value of the strain E(t) determine the stress response. The state is, however, iden-
tifiable through the variable

It (τ ) = − lG(τ )E(t)−
∫ ∞

0
l̇G(τ + s)Et (s)ds, (1.1)

which is the negative of the stress response to the constant process E(r) = E(t), r ∈
[0, τ ). The negative signs on the right are to maintain consistency with develop-
ments in Section 4. The relaxation tensor lG is discussed in Section 4. The regularity
assumptions made in [16] on histories, processes and the relaxation function yield

lim
τ→∞ It (τ ) = −Tr (t), (1.2)

with |Tr (t)| < +∞; in fact:

Tr (t) = lG∞E(t), (1.3)

which is the constitutive equation of an elastic (in fact hyperelastic) material with
elastic modulus lG∞. Equation (1.2) is a fading memory property for the stress
functional in linear viscoelasticity.

This property enters directly into the definition of state, which we shall consider
below.

Because of equations (1.2) and (1.3), it seems more appropriate to refer to such
materials as materials with relaxation instead of materials with fading memory. In
order to better understand this distinction, we see that the state is now characterized
by the future response of the material when, ideally, the null process is imposed for

∗ Surprisingly, the first contribution in the direction of applying Noll’s approach to linear
viscoelasticity was presented in [1]. As far as the authors are concerned, being aware of this
paper might have helped to develop the subject one decade ahead of time.
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a finite time interval on a material element (i.e., a “small” neighborhood of a fixed
and arbitrary point of the body). This characterization of the state is then alternative
to the usual one based on knowledge of the deformation history.

A fading memory property of the response functional [5] is usually required,
as opposed to the case in which the minimal state is adopted, where indeed the
relaxation property of the response functional suffices. Obviously, whenever the
stress response functional is such that the knowledge of the minimal state turns is
equivalent to the knowledge of the past history, the property of relaxation of the
stress response implies the fading memory of the related functional. In this sense,
the class of materials with relaxation is larger than that described by constitutive
equations with fading memory.

The first characterization of such a definition of state for linear viscoelastic
materials in the frequency domain was provided in [20], whereas an extension of
such a characterization was given in [35] in terms of equivalent variables.

As was already pointed out in [16], the main advantage of a response-based
definition of state relates to the physical features of the state itself. Indeed, the
“future stress”, It (τ ), is detectable through measurements and does not require any
knowledge of the past history.

Another advantage that we shall highlight is the fact that the response-based
definition of state is useful for both the study of Initial-Boundary Value Problems
(IBVP) (see Section 9) on one hand, and for the evolution of linear viscoelastic
systems on the other (Section 10).

To this end, we shall show that It (τ ) leads to the minimal information required
to identify the state of the material. Indeed, from (1.1) we see from any given equiv-
alent history, and from the knowledge of the current strain, that the state variable
It (τ ) is completely, and uniquely, determined, although the converse is not true.
Indeed, if It (τ ) is given instead, the current value of strain can be determined but
not, in general, the history. The inability to determine the history is due to the fact
that It (τ ) represents all the equivalent histories leading to the same future stress,
that is to say, the new state variable represents a family of histories. Examples in
which the set of equivalent histories is not a singleton are well known [41, 16].
These are cases in which the relaxation functions a finite sum of exponentials, in
which the state is described by a finite list of quantities (see, e.g., [52]). This topic
is addressed in Section 8.

In Sections 2 and 3, definitions and properties relating to a general theory of
materials, including nonlinear viscoelasticity, are presented in terms of the abstract
formulation of thermodynamics [8, 9, 29]. In particular, the minimal state and a
notion of fading memory via relaxation are established, and theorems characterizing
the minimal and maximal free energies are recalled.

In Section 4, linear viscoelasticity is considered and various formulae, required
in subsequent sections (including an explicit expression for the minimum free
energy), are presented. The functional It , given by (1.1), and related quantities
are introduced and discussed.

In Section 5 the space of processes is defined.
As is well known, there are two different definitions of free energy in visco-

elasticity (see, e.g., [16]), and according to one of these definitions, a free energy
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has to be a function of state, i.e., of It (τ ).1 In this paper, we provide new thermo-
dynamic potentials for the stress, i.e., new free energies, which are also functions
of state. Indeed, a new class of single-integral type free energy is introduced in
Section 6 as a quadratic form of the time derivative of the state variable (see, e.g.,
[43, 44] for discussions and analysis of single integral-type free energies that are
quadratic forms of histories). For exponentially decaying relaxation functions, it
can be shown that the dissipation associated with such energies is bounded from
below by a time-decay coefficient multiplied by the purely viscoelastic part of the
free energy. This property turns out to be crucial in the analysis of PDEs developed
in Section 9.

An analogous property holds for a family of multiple-integral free-energy func-
tionals which are the generalization of the previous single-integral type free energy.
We may refer to such a family as the n-family. Incidentally, forn = 0, the free energy
for single-exponential relaxation functions is recovered, whereas for n = 1, one
recovers the single-integral type free energy discussed above.

An explicit formula is derived in Section 7 for the minimal free energy starting
from the original formula derived in [20]. This is a quadratic functional depending
on the second derivative of It (τ ) with respect to τ . The use of such derivatives
of It is connected with convergence issues of certain inverse Fourier transforms.
The dissipation associated with the minimal free energy is also given as a similar
quadratic form.

A natural question may be how can the maximum free energy be represented in
terms of the minimal state descriptor. It is noteworthy that a new way to link the
minimum and maximum free energy, together with many other interesting results
has been recently established [15] in a very general context; in particular, the maxi-
mum free energy as a function of the minimal state has been characterized, although
no explicit formula for it has been provided.

In our paper (see Section 8), the Euler-Lagrange equation associated with the
problem of determining the minimum work expended going from the natural state
to a prescribed state is solved for a fairly large class of relaxation functions. First,
the issue of whether the set of equivalent histories corresponding to a given It is a
singleton, or not, is addressed in a fairly general context (the argument is restricted
to materials for which the eigenspaces of l̇G are time-independent [20, 26], which
almost certainly must be assumed in any case if the formulae giving the minimum
free energy are used to get explicit results). It is shown that the set is a singleton,
unless all the singularities of the Fourier transform of l̇G are isolated. This corre-
sponds to l̇G given by sums (not integrals) of decaying exponentials multiplying
trigonometric functions and polynomials or convergent-power series.

In this case, an explicit formula is given for the maximum free energy, gener-
alizing results given previously in [29, 26]. It is similar in structure to the formula
for the minimum free energy in [20]. This formula can also be expressed as a qua-
dratic functional of the second derivative of a quantity closely related to It by steps

1 The phrase “function of state” shall, in general, be taken to mean “function of the minimal
state”.
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entirely analogous to those for the minimum free energy. An explicit expression
is also given for the dissipation associated with the maximum free energy, as a
similar quadratic functional. If the set of equivalent histories is a singleton, then
the minimal state is the current value and history of strain, and the maximum free
energy is the work function.

The new approach outlined above to the theory of viscoelasticity, and the new
free energies, lead to applications to the PDEs governing the motion of a suitable
class of viscoelastic bodies. In particular the use of the new quadratic forms of the
minimal state variables yield results relating to well-posedeness and stability for
the IBVP. This formulation allows for initial data belonging to broader functional
spaces than those usually considered in the literature, which are based on histories.

Furthermore, we present an application of semi-group theory to the class of
materials discussed above. Here, besides having the system of equations in a more
general form than in the classical approach, results on asymptotic stability are
obtained again for initial data belonging to a space broader than that usually em-
ployed when states and histories are identified.

Various notations and assumptions used in later sections are defined in the
Appendix.

2. Fading memory and thermodynamics

The mechanical properties of any material are based on the concepts of state
and process [48, 8, 34]. We consider a body occupying the region B. For any mate-
rial point X ∈ B and time t , we define the configuration C(X, t) given by the
deformation gradient F(X, t).Writing C(t) or F(t) means that the dependence on
t is examined, while X is kept fixed.

A mechanical process P , of duration dp > 0, is a piece-wise continuous func-
tion on

[
0, dp

)
, with values inLin(IR3), given by

P(τ) = LP (τ), (2.1)

where L = ∇v is the velocity gradient and LP is the specified segment of values
of this quantity. The assignment P[t1,t2) is the restriction of P to [t1, t2) ⊂ [0, dp

)
.

In particular we denote by Pt the restriction of P to [0, t) , t < dp.

Given two processes P1, P2 of duration dP1 , dP2 , the composition P1 ∗ P2 of
P1 with P2 is defined as

P1 ∗ P2(τ ) =






P1(τ ) if τ ∈ [0, dp1

)
,

P2(τ − dp1) ifτ ∈ [dp1 , dp1 + dp2

)
.

Definition 2.1. A simple material element, at any X ∈ B , is a set
{
�,ϒ,�, ρ̂, T̃

}

such that

1. � is the space of mechanical processes P satisfying the following properties:
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(i) if P ∈ � , then P[t1,t2) ∈ � for every [t1, t2) ⊂ [0, dp
)
,

(ii) if P1, P2 ∈ � , then P1 ∗ P2 ∈ �;
2. the set ϒ is the space of all the stress tensor processes TP , defined by Property

5 below;
3. � is a set, the state space, whose elements σ are the possible states of the system;
4. the map ρ̂ : � ×� → � is the state transition function with the property

ρ̂(σ, P1 ∗ P2) = ρ̂(ρ̂(σ, P1), P2)

for all P1, P2 ∈ � , σ ∈ �;
5. the map T̃ : � × � → ϒ is the response function which, to any state σ and

process P, assigns the stress tensor process TP over the time interval
[
0, dp

)
:

TP (τ) = T̃(σ, P )(τ ), τ ∈ [0, dp
)
.

Definition 2.2. The system is said to be causal, if property 5 can be replaced by
the new condition:

5′. the map T̂ : � × Lin → Sym is such that

TP (τ) = T̂(σ (τ ), P (τ)), σ (τ ) = ρ̂(σ, Pτ ).

Remark 2.3. In this paper we consider only causal systems. For these systems, the
funtion T̃ is connected to T̂ by

T̂(ρ̂(σ, Pτ ), P (τ)) = T̃(σ, P )(τ ). (2.2)

In this framework, following [48], we can introduce a concept of equivalence
in the state space �.

Definition 2.4. Two states σ1, σ2 ∈ � are said to be equivalent, if they satisfy the
identity

T̃(σ1, P ) = T̃(σ2, P ) (2.3)

for all P ∈ �.
Moreover, we introduce the concept of a minimal state σR as the equivalence

class of the states according to Definition 2.4. In the following we denote by �R
the set of all σR .

A material with fading memory is defined by a constitutive equation which
relates the stress tensor T and the deformation gradient F by a functional of the
type

T(X, t) = T̂(Ft (X)), (2.4)

where Ft (X, s) = F(X, t − s), s ∈ IR+, is the history of F. The fading memory
property is characterized in detail below. Usually, for these materials, the state is
represented by the history Ft .
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If the initial state is σ0 = Ft0 and P(t) = LP (t), t ∈ [t0, t0 + dp
)

is a process
in �, then the transition function is defined by

ρ̂(σ0, P ) := Ft0+dp (s) =
{

Ft0(s − dp) if s ∈ [dp,∞
)
,

FP (t0 + dp − s) if s ∈ [0, dp
)
,

(2.5)

where FP is the solution of the Cauchy problem on the interval
[
t0, t0 + dp

)
:

d

dt
F(s) = LP (s)F(s),

F(t0) = Ft0(0). (2.6)

The response function is represented by the constitutive equation (2.4).
Materials with fading memory, described by (2.4)–(2.6), are simple material

elements in the sense of Definition 2.1.
A history Ft will be viewed as the pair (F(t),Ft (s)) of the present value F(t) and

the past history Ft (s), s > 0. One way to intrepret these two pieces of information
as one item can be found in [15], where a history Ft is defined as follows: past
histories are taken to be (i) of total bounded variation on IR+, and (ii) continuous
from the right. Thus, Ft (s) = Ft (s+) for all s ∈ (0,∞).

We define the static and null continuations of duration τ > 0, to be the histories
Ftτ and τFt defined by

Ftτ (s) :=

{
F(t) if s � τ

Ft (s − τ) if s > τ
;

τFt (s) :=

{
0 if s � τ

Ft (s − τ) if s > τ.
(2.7)

Now we are in a position to characterize the fading memory property of the
constitutive equation (2.4).

Definition 2.5. A material with memory represented by (2.4) satisfies the fading
memory property if the function T̂(Ftτ ) is bounded for any Ft ∈ � and for all
τ > 0; and there is an elastic material T̂el(F(t)) such that

lim
τ→∞ T̂(Ftτ ) = T̂el(F(t));

moreover

lim
τ→∞ T̂(τFt ) = 0.
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3. The dissipation principle and maximum recoverable work

Thermodynamics plays a central role in the characterization of natural states in
which to consider physical problems, and in the determination of the most suitable
norms for such studies. We show later how, for linear problems, explicit expressions
for various free energies allow us to decide on suitable norms and function spaces.

We begin by recalling the traditional Clausius-Duhem inequality and the defi-
nition of a cycle, which is a pair (σ, P ) such that ρ̂(σ, P ) = σ . For any state σ and
process P, the function ρ̂ determines the one-parameter family of states σ(t) =
ρ̂(σ, Pt ), t ∈ [0, dp

)
.

Moreover, we define the space

�σ = {σ ′ ∈ � ; ∃ P ∈ �, such that σ ′ = ρ̂(σ, P )
}
. (3.1)

Let us define the work done by a process P acting on a given state σ as follows:

W(σ, P ) =
∫ dP

0
T̂ (σ (τ ) , P (τ)) · LP (τ) dτ. (3.2)

Clausius-Duhem inequality (for isothermal processes)
For every cycle (σ, P ) ∈ � ×�, the inequality

∮ dP

0
T̂ (σ (τ ) , P (τ)) · LP (τ) dτ � 0 (3.3)

holds, where LP determines P as in (2.1).
For materials with fading memory, cycles are quite rare, because usually the

material reaches a state, which is different from the initial state, although it may be
“close” to it. For this reason it is more convenient to use the following approach
[27].

Strong dissipation principle
The set

W (σ ) := {W (σ, P ) ; P ∈ �} (3.4)

of the work done in passing from a given state σ to any state σ
′ ∈ �σ , is bounded

below. There exists a state σ †, called zero state, such that

inf W
(
σ †
)

= 0, and W
(
σ †, P

)
> 0 , ∀ P 	= 0

For materials with fading memory, the zero state is given by the history F†(s) equal
to the unit tensor for all s ∈ [0,∞) .

Definition 3.1. A function ψ : Sψ → R+ is a free energy if

(i) the domain Sψ ⊂ � is invariant under ρ, namely, for every σ1 ∈ Sψ and
P ∈ �, the state σ = ρ̂ (σ1, P ) ∈ Sψ . Also σ † ∈ Sψ , and ψ

(
σ †
) = 0;

(ii) for any pair σ1 , σ2 ∈ Sψ and P ∈ � such that ρ̂ (σ1, P ) = σ2 we have:

ψ (σ2)− ψ (σ1) � W (σ1, P ) . (3.5)
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It is well known that for materials with memory there are many free energies (see,
e.g., [8] for general dissipative materials and [28, 16] and many others), no matter
what the definition of the energy. Depending on the definition of the free energy,
the family F of the free energies might be a convex set. A general property of
the resulting sets is that they are bounded [16] and their minimum and maximum
elements are denoted here by ψm and ψM .

Definition 3.2. A free energy ψm is called the minimum free energy if:

(i) ψm is a non-negative function with domain S = �,
(ii) the zero state σ † ∈ � is such that ψm(σ †) = 0,

(iii) for any free energy ψ : S → IR+ such that σ † ∈ S and ψ(σ †) = 0, we have

ψ(σ) � ψm(σ) , ∀ σ ∈ S.

The following theorem is proved in [27].

Theorem 3.3. The functional

ψm(σ):= − inf W(σ ) (3.6)

is the minimum free energy.

Equivalent characterizations for the minimum free energy have been proved in [35].
Let us recall definition (3.1) given above for the set�σ . For any pair σ0, σ ∈ �,

such that σ ∈ �σ0 , we can consider the set:

N(σ0, σ ) = {W(σ0, P ), ∀ P ∈ �; ρ̂(σ0, P ) = σ
}
. (3.7)

From the Strong Dissipation Principle, this set is bounded below.
The following theorem is proved in [29].

Theorem 3.4. For any fixed σ i, the functional ψσ
i

M : �σi → IR+, defined by

ψσ
i

M (σ ) = inf N(σ i; σ)+ ψm(σ
i), (3.8)

is a free energy, called a maximum free energy. For any free energyψ : Sψ → IR+,
such that Sψ ⊃ �σi , and ψ(σ i) = ψm(σ

i),

ψ(σ) � ψσ
i

M (σ ), ∀ σ ∈ �σi . (3.9)

Remark 3.5. Of course, for any σ i ∈ � we may obtain a different free energy.
Moreover, for a fixed σ i ∈ �, the definition of maximum free energy may depend
on the definition of state. We can, however, construct a maximum free energy that is
defined on the space of minimal states. In other words, if we consider the definition
of minimal state, then (3.7) is replaced by

N(σ0R, σR) = {W(σ0R, P ), ∀ P ∈ �; ρ̂(σ0R, P ) = σR
}
.
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This set is generally larger than N(σ0, σ ), if σ0 ∈ σ0R and σ ∈ σR . For this reason
the maximum free energy, defined on �R as

ψ
σiR
M (σR) = inf N(σ iR; σR)+ ψm(σ

i
R), (3.10)

satisfies the inequality

ψ
σiR
M (σR) � ψσ

i

M (σ ) , σ i ∈ σ iR, σ ∈ σR.
Relation (3.9) will apply to any free energy ψ(σR) defined on �R , provided
ψ(σ iR) = ψm(σ

i
R).

It follows from (3.2) and (3.5) that, for any time t where the process is continuous,
we have

ψ̇(σ (t)) � T̂ (σ (t), P (t)) · LP (t). (3.11)

4. Linear viscoelasticity

Let us now consider the linear theory of viscoelasticity. For this case the tensor
F is replaced by the infinitesimal deformation gradient

E = ∇u + (∇u)T

2
∈ Sym, (4.1)

where u denotes the displacement field, such that F = ∇u + I (where I is the sec-
ond-order identity tensor), while a process is now given by a specified set of values
of Ė(t), t ∈ [0, dp

)
.We denote position by x which, in the linear approximation,

can be taken to be either the current or reference position. Then the constitutive
equation (2.4) becomes

T̃(Et ) = T(x, t) = lG0(x)E(x, t)+
∫ ∞

0
l̇G(x, s)Et (x, s) ds

= lG∞(x)E(x, t)+
∫ ∞

0
l̇G(x, s)Etr (x, s)ds,

Et (x, s) := E(x, t − s), Etr (x, s) := Et (x, s)− E(x, t), s ∈ IR++,
lG0(x) := lG(x, 0), lG∞(x) := lG(x,∞). (4.2)

The quantity E(x, t) ∈ Sym is the instantaneous or present value of the strain
and Et : IR++ → Sym denotes the past history. We refer to Etr as the relative
strain history. The quantity lG0(x) ∈ Lin(Sym), the instantaneous modulus, is a
symmetric tensor as is the equilibrium modulus, given by [34],

lG∞(x) = lG0(x)+
∫ ∞

0
l̇G(x, s)ds. (4.3)

Both lG0(x) and lG∞(x) are positive tensors. The function l̇G represents the time
derivative of the relaxation function. We will assume that l̇G(x, ·) ∈ L1(IR++,
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Lin(Sym)) and is symmetric. The first assumption is simply a weak “fading”
memory requirement on the response functional T̃ (see, e.g., [17, 16]) whereas the
second is introduced here for convenience. Some results for the case where l̇G is not
symmetric are presented in [34]. Henceforth, it is understood that the statements
are relative to any fixed point x ∈ B, if this variable is omitted.

We also assume that l̇G(x, ·) ∈ L2(IR++, Lin(Sym)) (see Appendix (A.6) and
after). From now on we shall drop the dependence upon the space variable x. The
Fourier transform of l̇G(t), namely l̇GF (ω) = l̇Gc(ω)− i l̇Gs(ω), for real ω, belongs
to L2(IR, Lin(Sym)). It is clear that l̇Gc(ω) is even, as a function of ω, and that
l̇Gs(ω) is odd. The quantity l̇Gs(ω) therefore vanishes at the origin. In fact, a con-

sequence of our assumption of analyticity of Fourier-transformed quantities on the
real axis of 	, is that it vanishes at least linearly at the origin. It is assumed that it
vanishes no more stronger than linearly.

From [33, 34] we have, on the basis of thermodynamical arguments

l̇Gs(ω) < 04 ∀ ω ∈ IR++, (4.4)

where 04 is the zero in Lin(Sym), and from [34], we also have

lG∞ − lG0 = 1

π

∫ ∞

−∞
dω

l̇Gs(ω)

ω
. (4.5)

By virtue of (4.4), this yields

lG0 > lG∞. (4.6)

It is shown in [34] that (4.4) implies the inequality

lG0 − lG(s) > 04. (4.7)

It follows that l̇G(0) � 04. For l̇G(0) < 04, we have (see (A.12))

l̇Gc(ω) ∼ − l̈G(0)

ω2 , l̇Gs(ω) ∼ l̇G(0)

ω
, (4.8)

at large ω, where ∼ stands for “behaves as”.
From the conclusions and assumptions of the Appendix, l̇GF is analytic on	−,

which includes the real axis. The analyticity of l̇GF implies that any singularities are
at least slightly removed into 	(+), which turn means that l̇G decays exponentially
at large positive times. However, formulae of physical interest will generally be
continuous with respect to taking the limit to non-exponential behavior.

Applying Plancherel’s theorem to (4.2), we obtain

T(t) = lG0E(t)+ 1

2π

∫ ∞

−∞
l̇GF (ω)Et+(ω) dω

= lG∞E(t)+ 1

2π

∫ ∞

−∞
l̇GF (ω)Etr+(ω) dω. (4.9)

It is worth noting that if we replace l̇GF (ω) by
[

l̇GF (ω)+ IF(ω)
]
, where IF ∈

Lin(Sym) is analytic on 	− and goes to zero at large frequencies at least as ω−1,
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the relationship still holds. This follows by a simple application of Cauchy’s theo-
rem. In particular, we have

T(t) = lG0E(t)+ 1

2π

∫ ∞

−∞

[
l̇GF (ω)+ λ l̇GF (ω)

]
Et+(ω) dω, (4.10)

where λ is any complex constant. Choosing λ = −1 yields

T(t) = lG0E(t)+ i

π

∫ ∞

−∞
l̇Gs(ω)Et+(ω)dω

= lG∞E(t)+ i

π

∫ ∞

−∞
l̇Gs(ω)Etr+(ω)dω, (4.11)

Etr+(ω) = Et+(ω)− E(t)
iω− ,

where Etr+ is the Fourier transform of Etr , defined in (4.2)3, as can be seen from
(A.9). The equivalence of the two expressions for T can be seen with the aid of
(4.5). For λ = 1,

T(t) = lG0E(t)+ 1

π

∫ ∞

−∞
l̇Gc(ω)Et+(ω)dω

= lG∞E(t)+ 1

π

∫ ∞

−∞
l̇Gc(ω)Etr+(ω)dω.

(4.12)

In fact, (4.11) corresponds to taking the even extension of lG to IR, namely lG(s) =
lG(|s|), s ∈ IR which yields the odd extension of l̇G. This amounts to writing (4.2)

as

T(t) = lG0E(t)+
∫ ∞

−∞
d

ds
lG(|s|)Et (s) ds, (4.13)

noting that Et is taken to be zero on IR−. We can then derive (4.11)1 by observing
that

∫ ∞

−∞
d

ds
lG(|s|)e−iωs ds = −2i l̇Gs(ω). (4.14)

Also, (4.12) corresponds to taking the even extension of l̇G, which we denote by
l̇Ge. We see that (4.2) can be written as

T(t) = lG0E(t)+
∫ ∞

−∞
l̇Ge(s)Et (s) ds. (4.15)

Then (4.12) follows from
∫ ∞

−∞
l̇Ge(s)e

−iωsds = 2 l̇Gc(ω). (4.16)

We define l̆G : IR+ �→ Lin(Sym) as

l̆G(s) := lG(s)− lG(∞), (4.17)
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and note the relation

l̇GF (ω) = iω l̆G+(ω)− l̆G(0), (4.18)

or

l̇Gs(ω) = −ω l̆Gc(ω), l̇Gc(ω) = ω l̆Gs(ω)− l̆G(0). (4.19)

The relation

dEt+(ω)
dt

= −iωEt+(ω)+ E(t), (4.20)

obtained by differentiating the integral definition of Et+(ω) and carrying out a partial
integration, is required for manipulations relating to the minimum and maximum
free energies. Generally, it is sufficient that it holds almost everywhere. For this to
be so, it is sufficient to assume that Et ∈ BV (IR+)∩ Dtemp(IR+), where BV (IR+)
is the space of functions of bounded variation on IR+ and Dtemp(IR+) is the space
of tempered distributions on IR+ (see, e.g., [20]). For the sake of simplicity, it will
be assumed here that, as well as belonging to L2(IR+), Et ∈ L1(IR+) ∩ C1(IR+)
and that its derivative also belongs to L1(IR+) [50].

The work done on the material by the strain history Et is

W̃ (E(t),Et ) :=
∫ t

−∞
T(τ ) · Ė(τ )dτ

= 1

2
lG0E(t) · E(t)+

∫ t

−∞

∫ ∞

0
l̇G(s)Eτ (s) · Ė(τ )dsdτ. (4.21)

It will be clear from the representation of W̃ (E(t),Et ) in the frequency domain,
given below, that it is a non-negative quantity. We will restrict our considerations
to histories such that W̃ (E(t),Et ) < ∞ (see Section 5). The quantity W̃ (E(t),Et )
is, in some circumstances, the maximum free energy (see [18, 16] and Section 8).
It will be denoted by W(t). We can show that

W(t) = φ(t)+ 1

2

∫ ∞

0

∫ ∞

0
Etr (s1) · lG12(|s1 − s2|)Etr (s2)ds1ds2

= S(t)+ 1

2

∫ ∞

0

∫ ∞

0
Et (s1) · lG12(|s1 − s2|)Et (s2)ds1ds2;

lG12(|s1 − s2|) = ∂

∂s1

∂

∂s2
lG(|s1 − s2|); (4.22)

φ(t) :=
1

2
lG∞E(t) · E(t);

S(t) := T(t) · E(t)− 1

2
lG0E(t) · E(t).

A representation of the work W(t), given by (4.22), in the frequency domain,
has been obtained in [27] (see also [24]) in terms of integrals over IR+. Using sym-
metry arguments, this representation can be expressed as an integral over IR of the
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form

W(t) = φ(t)+ 1

2π

∫ ∞

−∞
IH(ω)Etr+(ω) · E

t

r+(ω)dω

= S(t)+ 1

2π

∫ ∞

−∞
IH(ω)Et+(ω) · E

t

+(ω)dω,
(4.23)

where, for each givenω ∈ IR, the fourth-order tensor IH(ω) ∈ Lin(Sym) is defined
as

IH(ω):= − ω l̇Gs(ω). (4.24)

The equivalence of the two forms of (4.23) follows from (4.5) and (4.11). These
reduce to the relations of Golden [37] in the scalar case. It follows from (4.8)2
that

IH(∞) = − l̇G(0). (4.25)

As discussed at the beginning of the Appendix, IH(ω) (or indeed any tensor in
Lin(Sym)) can be represented as a matrix acting on IR6. From a result in [20],
based on a theorem of Gohberg & Kreı̆n [36], IH(ω) can be factorized as:

IH(ω) = IH+(ω) IH−(ω), (4.26)

with

IH+(ω) = IH∗−(ω), (4.27)

where IH∗− is the hermitean conjugate of IH− (see (A.4)). The matrix functions
IH± admit analytic continuations which are analytic in the interior and continuous

up to the boundary of the complex half planes 	∓, and are such that

det IH±(ζ ) 	= 0 , ζ ∈ 	∓. (4.28)

Similarly, IH has a right factorization with corresponding properties [20]. The fac-
torization is unique up to a multiplication on the left of IH− by a constant, unitary
matrix, and multiplication of IH+ on the right by the inverse of this matrix. From
(4.25), IH±(∞) are non-zero and

IH+(∞) IH−(∞) = − l̇G(0). (4.29)

The notation for IH+(ω) and IH−(ω) follows the convention used in [37], i.e.,
the sign indicates the half plane where any singularities of the tensor, and any zeros
in the determinant of the corresponding matrix, occur.

Consider now the second-order symmetric tensors IH−(ω)Etr+(ω) and IH−(ω)
Et+(ω), whose components are continuous by virtue of the properties of IH−(ω)
and Et+(ω). The Plemelj formulae [47]

Pt (ω) := IH−(ω)Etr+(ω) = pt−(ω)− pt+(ω),

Qt (ω) := IH−(ω)Et+(ω) = qt−(ω)− qt+(ω),
(4.30)
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where

pt (z) :=
1

2πi

∫ ∞

−∞
Pt (ω)
ω − z

dω , pt±(ω):= lim
α→0∓ pt (ω + iα),

qt (z) :=
1

2πi

∫ ∞

−∞
Qt (ω)

ω − z
dω , qt±(ω):= lim

α→0∓ qt (ω + iα).

(4.31)

Moreover, pt (z) = pt+(z) is analytic in z ∈ 	(−) and pt (z) = pt−(z) is analytic
in z ∈ 	(+). Both are analytic on the real axis (as indeed is Pt ) by virtue of the
assumption in Section 10 on the analyticity of Fourier-transformed quantities on
the real axis, and by virtue of an argument given in [37]. Similar statements apply
to qt and Qt . It can be shown that

qt+(ω) = pt+(ω). (4.32)

The minimum free energy has the form [20, 21]:

ψm(t) = φ(t)+ 1

2π

∫ ∞

−∞
|pt−(ω)|2dω

= S(t)+ 1

2π

∫ ∞

−∞
|qt−(ω)|2dω,

(4.33)

while the work function W(t), defined by (4.22), is given by

W(t) = φ(t)+ 1

2π

∫ ∞

−∞

[
|pt−(ω)|2 + |pt+(ω)|2

]
dω

= S(t)+ 1

2π

∫ ∞

−∞

[
|qt−(ω)|2 + |qt+(ω)|2

]
dω � ψm(t).

(4.34)

Using the static continuation defined by (2.7) and (4.2) we have

T̂(Etτ ) = lG(τ )E(t)+
∫ ∞

0
l̇G(s + τ)Et (s)ds. (4.35)

From Definition 2.5

∣∣∣T̂(Etτ )
∣∣∣ < ∞, ∀ τ � 0

lim
τ→∞

∫∞
0 l̇G(s + τ)Et (s)ds = 0,

(4.36)

giving

lim
τ→∞ T̂(Etτ ) = lG∞E(t). (4.37)

Relation (4.37) follows from (4.35) and (4.36)2. Since the right-hand side is the
constitutive equation for an elastic solid, we must have

lG∞ > 0. (4.38)
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It follows from (4.6) that

lG0 > 0. (4.39)

In [16, 18], it is observed that the linear constitutive equation (4.2) allows us
to rewrite the equivalence relation among states specified by Definition 2.4 as an
equivalence relation among histories (see also [41]). It is easy to prove the following
statement.

Proposition 4.1. Two histories Et1, Et2 represent equivalent states, if

E1(t) = E2(t), (4.40)

and the past histories satisfy:
∫ ∞

0
l̇G(s + τ)Et1(s)ds =

∫ ∞

0
l̇G(s + τ)Et2(s)ds , ∀ τ ∈ IR+. (4.41)

The equality (4.41) allows us to define the minimal state by means of the function

Ĭt (τ,Et ) := −
∫ ∞

0
l̇G(s + τ)Etr (s)ds, (4.42)

instead of the past history Et . The state is given by the pair (E(t), Ĭt (τ )), or equiv-
alently by the function

It (τ,Et ) := − lG(τ )E(t)−
∫ ∞

0
l̇G(s + τ)Et (s)ds = − lG∞E(t)+ Ĭt (τ,Et ),

(4.43)

which is of course the negative of the stress associated with the static continuation
in the interval [0, τ ), namely −T̂(Etτ ), given by (4.35). From It (τ,Et ), we can
obtain both E(t) and Ĭt (τ,Et ), since

lim
τ→∞ It (τ,Et ) = − lG∞E(t),

and

Ĭt (τ,Et ) = It (τ,Et )− lim
τ→∞ It (τ,Et ).

Thus, an equivalent form of the statement of Proposition 4.1 is: we say that Et1 ∼ Et2
if

It (τ,Et1) = It (τ,Et2), ∀ τ ∈ IR+, (4.44)

Hence, the function It (τ,Et ) represents the equivalence class of histories,
because any history Et which belongs to this class yields the same value of It (τ,Et )
or (E(t), Ĭt (τ )). For this reason, It (τ,Et ) will be referred to as the minimal state.
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We also define

Ĩt (τ,Et ) := −
∫ ∞

0
l̇G(s + τ)Et (s)ds

= lG(τ )E(t)+ It (τ,Et ) = l̆G(τ )E(t)+ Ĭt (τ,Et ).

(4.45)

In the following, for the sake of simplicity, we will usually denote by Ĭt (τ ),
It (τ ) and Ĩt (τ ) the functions Ĭt (τ,Et ), It (τ,Et ) and Ĩt (τ,Et ). The quantities Ĭt

and Ĩt are functions of the minimal state It in the sense that they have the same
value for different histories in the same minimal state.

We will require later the result

d

dt
Ĭt (τ ) = − l̆G(τ )Ė(t)+ ˙̆It (τ ), (4.46)

where

˙̆It (τ ):= d

dτ
Ĭt (τ ) = −

∫ ∞

0
l̈G(τ + s)Etr (s)ds. (4.47)

Plancherel’s theorem yields

Ĭt (τ ) = − 1

2π

∫ ∞

−∞
l̇GF (ω)Etr+(ω)e−iωτ dω, τ � 0. (4.48)

Just as in (4.10):

Ĭt (τ ) = − 1

2π

∫ ∞

−∞

[
l̇GF (ω)+ λ l̇GF (ω)

]
Etr+(ω)e−iωτ dω, τ � 0,

(4.49)

since the added term gives zero, which can be seen by integrating over a contour
around 	− (noting that the exponential goes to zero as Imω → −∞). Let

Jt (τ ) := Ĭt (−τ), τ � 0. (4.50)

We now have

Jt−(ω) :=
∫ 0

−∞
Jt (τ )e−iωτ dτ

= − 1

2πi

∫ ∞

−∞

[
l̇GF (ω′)+ λ l̇GF (ω′)

]
Etr+(ω′)dω′

ω′ − ω+ .

(4.51)

Similarly, let Jt be defined by (4.49), (4.50) for τ > 0. In this case, it depends on
λ. Thus

Jt+(ω, λ) =
∫ ∞

0
Jt (τ, λ)e−iωτ dτ,

= 1

2πi

∫ ∞

−∞

[
l̇GF (ω′)+ λ l̇GF (ω′)

]
Etr+(ω′)dω′

ω′ − ω−

(4.52)
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and

JtF (ω, λ) = Jt+(ω, λ)+ Jt−(ω, λ) = −
[

l̇GF (ω)+ λ l̇GF (ω)
]

Etr+(ω),
(4.53)

by the Plemelj formulae. Referring to (4.8), we see that

JtF (ω, λ) ∼ ω−3, λ 	= 1, JtF (ω, 1) ∼ ω−4, λ = 1, (4.54)

at large ω, since Etr+(ω) ∼ ω−2 by (A.11).
For λ = −1, we obtain

Jt−(ω) = 1

π

∫ ∞

−∞
IH(ω′)Etr+(ω′)dω′

ω′(ω′ − ω+)

= 1

π

∫ ∞

−∞
IH+(ω′)

[
pt−(ω′)− pt+(ω′)

]
dω′

ω′(ω′ − ω+)

(4.55)

by virtue of (4.24) and (4.30)1. The pt+(ω′) term vanishes on integrating over 	−,
and we obtain

Jt−(ω) = 1

π

∫ ∞

−∞
IH+(ω′)pt−(ω′)dw′

ω′(ω′ − ω+)
, (4.56)

which is the frequency space version of a result given in [20] (for histories rather
than relative histories). Since pt− is a function of the minimal state [20], it follows
that Jt− is also—which we have already observed. There is of course no correspond-
ing result for Jt+.

Note that JtF (ω,−1) (or Jt (s,−1) in the time domain) corresponds to Ĭt (−τ),
defined by the odd extension of l̇G to IR, or

Ĭt (−τ) =
∫ ∞

0

∂

∂τ
lG(|τ − u|)Etr (u)du, τ ∈ IR. (4.57)

The integral can be extended over IR, if Etr is understood to vanish on IR−. Taking
the Fourier transform immediately yields (4.53) (for λ = −1) with the aid of (4.14).
Also, JtF (ω, 1) corresponds to the even extension of l̇G to IR:

Ĭt (−τ) = −
∫ ∞

0
l̇Ge(τ − u)Etr (u)du, τ ∈ IR, (4.58)

where lGe was introduced in (4.15). Again, we can extend the integration to IR and,
with the aid of (4.16), obtain (4.53) (for λ = 1), by taking the Fourier transforms.

These formulae are generalizations of (4.13) and (4.15).
A central aim of this work is to express various free energies in terms of

(E(t), Ĭt ), or equivalently in terms of It . This ensures, in particular, that they are
functions of the minimal state. New functionals, expressible in terms of It , which
are free energies for a fairly wide class of materials, are introduced in Section 6.
Also, the minimum free energy, which can be shown to be a function of the minimal
state in all cases where it exists [20], is expressed in terms of (E(t), Ĭt ) in Section 7.
Materials for which the maximum free energy is a function of the minimal state
are characterized in Section 8. For these materials, the maximum free energy is
expressed as a function of Ĭt .
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5. The space of processes

We define any process P̃ ∈ � over IR+, by means of the trivial extension

P̃ (τ ) =






P(τ) , τ ∈ [0, dp
)
,

0, τ ∈ [dp,∞
)
.

(5.1)

This new space will be denoted by
◦
�. Now let us consider the work W(σ0,P̃ ),

where σ0 = E0 is the history at t = 0, and P̃ ∈ ◦
� is a process such that P(τ) =

Ė(τ ), τ∈ [0, dp
)
.

We have Et = ρ̂(E0, Pt ); also the stress is given by

T(Et ) = lG0E(t)+
∫ t

0
l̇G(s)Et (s) ds +

∫ ∞

t

l̇G(s)Et (s) ds

= lG0E(t)+
∫ t

0
l̇G(s)Et (s) ds − Ĩ0(t), (5.2)

where Ĩ0 is defined by (4.45) with t = 0. From (5.1), we conclude that the limit
E(∞) = limt→+∞ E(t) exists. Then,

W(σ, P ) =
∫ ∞

0

{
lG0E(t)+

∫ t

0
l̇G(s)Et (s) ds

}
· Ė(t) dt −

∫ ∞

0
Ĩ0(t) · Ė(t) dt

=
∫ ∞

0
( lG0E(t) · Ė(t)dt

+
∫ ∞

0

{
lG(s)E(t − s) |t0 +

∫ t

0
lG(s)Ėt (s) ds)

}
· Ė(t) dt

−
∫ ∞

0
Ĩ0(t) · Ė(t) dt

= 1

2

∫ ∞

0

∫ ∞

0
lG(|t − τ |)Ė(t) · Ė(τ )dτdt −

∫ ∞

0
I0(t) · Ė(t) dt,

(5.3)

where (see (4.45))

I0(t) = − lG(t)E(0)+ Ĩ0(t) . (5.4)

As noted after (4.1), we interpret Ė(t)(t > 0) as a process, denoting it by ĖP (t).
Let us consider the following definition of a finite work process, given by Gentili

in [35].

Definition 5.1. A process ĖP : [0,∞) → Sym is said to be a finite work process
if

W(0†, ĖP ) =
∫ dP

0
T̂(0†, ĖP[0,τ )) · ĖP (τ)dτ < ∞.
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Here, the notation of (2.2) has been used. It follows from the Strong Dissipation
Principle that for any ĖP 	= 0 ,

W(0†, ĖP ) > 0.

Moreover, by virtue of (5.3), the work W(0†, ĖP ) can be written as

W(0†, ĖP ) = 1

2
lG∞E(dP ) · E(dP )

+1

2

∫ ∞

0

∫ ∞

0
l̆G(|τ − s|)ĖP (τ) · ĖP (s)dτds (5.5)

= 1

2
lG∞E(dP ) · E(dP )+ 1

2π

∫ ∞

−∞
l̆Gc(ω)ĖP+(ω) · ĖP+(ω)dω,

where l̆Gc(ω) is defined by (4.19).
Then, Gentili [35] defines the process space as the set of finite work processes:

HG(IR
+) =

{
ĖP ∈ Sym; E(dp) = 0; 1

2

∫ ∞

0

∫ ∞

0
l̆G(|τ − s|)ĖP (τ) · ĖP (s)dτds

= 1

2π

∫ ∞

−∞
l̆Gc(ω)ĖP+(ω) · ĖP+(ω)dω < ∞

}
. (5.6)

Let us return to (5.3), referred to an arbitrary time t , denoting (σ, P ) by (It , ĖP ).
We can write:

W(It , ĖP ) = 1

2

∫ ∞

0

∫ ∞

0
lG
(∣∣τ − τ ′∣∣) ĖP (τ ′) · ĖP (τ)dτdτ ′

−
∫ ∞

0
It (τ ′,Et ) · ĖP (τ ′) dτ ′

= 1

2
lG∞E0(∞) · E0(∞)

+1

2

∫ ∞

0

∫ ∞

0
l̆G(
∣∣τ − τ ′∣∣)ĖP (τ ′) · ĖP (τ)dτdτ ′

+ lG∞E(t) · E0(∞)−
∫ ∞

0
Ĭt (τ ′,Et ) · ĖP (τ ′) dτ ′, (5.7)

where Et (∞) = ∫∞
t

ĖP (τ)dτ, and Ĭt is defined by (4.42). Thus,

W(It , ĖP ) = 1

2
lG∞E0(∞) · E0(∞)+ 1

2π

∫ ∞

−∞
l̆Gc(ω)ĖP+(ω) · ĖP+(ω)dω

+ lG∞E(t) · E0(∞)− 1

2π

∫ ∞

−∞
Ĭt+(ω) · ĖP+(ω)dω < ∞,

(5.8)

where

Ĭt+(ω) =
∫ ∞

0
Ĭt (τ )e−iωτ dτ,
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which is in fact equal to Jt−(−ω) defined by (4.51).
Therefore, the set of admissible states It or (E(t), Ĭt (·)) belongs to the set

Sym× H′
G(IR

+), where H′
G(IR

+) is the dual of HG(IR+), namely

H′
G(IR

+) =
{

Ĭt ;
∫ ∞

0
Ĭt (τ ) · ĖP (τ)dτ < ∞,∀ ĖP ∈ HG(IR

+)
}
. (5.9)

6. New free energies expressed as functionals of Ĭt

Let us first present the Volterra-Graffi functional [39, 40, 16, 18]

ψG
(
Et
) = φ(t)− 1

2

∫ ∞

0
l̇G (s)Etr (s) · Etr (s)ds, (6.1)

which is a free energy if l̇G(s) � 04, l̈G(s) � 04, ∀s ∈ IR+. This is the Graffi-
Volterra free energy and is frequently used in applications.

Remark 6.1. Note that the assumption l̈G(u) � 04, u � s implies l̇G(s) � 04. It
implies l̇G(s) < 04 if l̈G is non-zero on a set of finite measure with elements u > s,
which further implies that l̇G(0) < 04, except in trivial cases.

We now introduce a functional which is a free energy for a certain class of
materials, in fact the same class for which the Volterra-Graffi functional, given by
(6.1), is a free energy. We also present a family of related functionals which are
free energies for more restrictive conditions on the material.

Let us first write down a general representation of a free energy, noting some
of its properties. These were presented for the scalar case in [37]. Consider the
quantity

ψ(t) = φ(t)+ 1

2

∫ ∞

0

∫ ∞

0
Etr (s) · lG12(s, u)Etr (u)dsdu, (6.2)

where φ(t) is given by (4.22)4 and a numerical subscript on lG indicates differen-
tiation with respect to the corresponding argument, so that

lG12(s, u) := ∂

∂s

∂

∂u
lG(s, u). (6.3)

We obtain

lG12(s, u) = lG�
12(u, s) (6.4)

without loss of generality. Since the integral in (6.2) must exist for finite relative
histories, we have lG12(∞, s), lG12(s,∞) = 0.

The requirement that ψ(t) � φ(t) for all t [5, 20] implies that the kernel
lG12 must be such that the integral term in (6.2) is non-negative for all histories.

Furthermore, we must have

ψ̇(t)+D(t) = T(t) · Ė(t), (6.5)
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whereD(t)must be non-negative according to the second law. Equation (6.5) leads
us to impose the properties

lG1(s, 0) = lG2(0, s) = l̇G(s), lG2(∞, s) = lG1(s,∞) = 0 (6.6)

where l̇G(s) is the derivative of the relaxation function and

D(t) = −1

2

∫ ∞

0

∫ ∞

0
Etr (s) · IK12(s, u)Etr (u)dsdu � 0,

IK(s, u) = lG1(s, u)+ lG2(s, u). (6.7)

Thus, the kernel IK must be such that the non-negativity of D is ensured. If we
assume that

lG(s,∞) = lG(∞, s) = lG∞, s ∈ IR+, (6.8)

where lG0, lG∞ are defined by (4.2)4, then (6.6)1 yields

lG(s, 0) = lG(0, s) = lG(s), lG(0, 0) = lG0, (6.9)

and

lG(s, u) = lG∞ +
∫ ∞

s

∫ ∞

u

lG12(s
′, u′)ds′du′, (6.10)

which clearly obeys (6.3). It follows that ψ(t) can be expressed as

ψ(t) = φr(t)+ 1

2

∫ ∞

0

∫ ∞

0
Ėt (s) · lG(s, u)Ėt (u)dsdu,

φr(t) = φ(t)− 1

2
lG∞Etr (∞) · Etr (∞), Ėt (s) = − d

ds
Et (s) = d

dt
Et (s)

(6.11)

if E(−∞) is finite.
It is worth noting that lG(·, ·), given by (6.10), is an absolutely continuous func-

tion whenever lG12 ∈ L1(IR+ × IR+); in this case, (6.2) is well defined even if
Etr ∈ BV (IR+). The corresponding expression (6.11) is also well defined since the
kernel is absolutely continuous and Ėt ∈ L1(IR+).

Consider the functional

�F (It ) = φ(t)− 1

2

∫ ∞

0
l̇G
−1
(τ )

˙̆It (τ ) · ˙̆It (τ )dτ, (6.12)

where l̇G
−1
(τ ) is the inverse of the tensor l̇G(τ ) and ˙̆It is defined by (4.47). It is

assumed that l̈G(τ ) is positive semidefinite for all τ ∈ IR+, from which it follows
that l̇G(τ ) is negative semidefinite for all τ ∈ IR+. Thus, the integral term in (6.12)

is non-negative. The tensor l̇G
−1

becomes singular at large τ , but it is clear from
the representation (6.13) below that the integral exists.
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The domain of definition of the functional �F will be denoted by HF (IR+) =
Sym× H∗

F (IR
+), where

H∗
F (IR

+) =
{

Ĭt ;
∫ ∞

0
l̇G
−1
(τ

˙̆It (τ ) · ˙̆It (τ )dτ < ∞
}
.

This space is very much larger than the domain of definition of the Graffi-Volterra
free energy, as we see for a kernel given by an exponential or a sum of exponentials.

As a function of the relative history Etr , the functional �F can be written

�F (It ) = φ(t)

−1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0
l̈G(τ + s2) l̇G

−1
(τ )

l̈G(τ + s1)Etr (s1) · Etr (s2)ds1ds2dτ

= φ(t)+ 1

2

∫ ∞

0

∫ ∞

0
lG12(s1, s2)Etr (s1) · Etr (s2)ds1ds2,

(6.13)

where

lG(s1, s2) = −
∫ ∞

0
l̇G(τ + s2) l̇G

−1
(τ ) l̇G(τ + s1)dτ + lG∞ = lG(s2, s1),

(6.14)

and lG12 is given by (6.3). We see that lG(s1, s2) obeys (6.4) and (6.9). Also, the
quantity IK in (6.7) is given by

IK(s1, s2)=−
∫ ∞

0
( l̈G(τ + s1) l̇G

−1
(τ ) l̇G(τ + s2)+ l̇G(τ + s1) l̇G

−1
(τ ) l̈G(τ + s2))dτ.

Partial integration with respect to τ gives

IK(s1, s2) = l̇G(s1) l̇G
−1
(0) l̇G(s2)+

∫ ∞

0
l̇G(τ + s1)

d

dτ
l̇G
−1
(τ ) l̇G(τ + s2)dτ,

which yields a non-negative dissipation since, under our assumptions,

d

dτ
l̇G
−1
(τ ) = − l̇G

−1
(τ ) l̈G(τ ) l̇G

−1
(τ ) (6.15)

is a non-positive tensor (i.e. negative semidefinite).
In fact, a more direct demonstration of the fact that �F is a free energy can be

given, though the above, general, approach is used later. From (4.46),

d

dt

˙̆It (τ ) = − l̇G(τ )Ė(t)+ ¨̆It (τ ), (6.16)
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so that

d

dt
�F (It ) = T(t) · Ė(t)−

∫ ∞

0
l̇G
−1
(τ )

¨̆It (τ ) · ˙̆It (τ )dτ

= T(t) · Ė(t)+ 1

2
l̇G
−1
(0)˙̆It (0) · ˙̆It (0)

+1

2

∫ ∞

0

[
d

dτ
l̇G
−1
(τ )

] ˙̆It (τ ) · ˙̆It (τ )dτ. (6.17)

Thus, we have

D(t) = −1

2
l̇G
−1
(0)˙̆It (0) · ˙̆It (0)− 1

2

∫ ∞

0

[
d

dτ
l̇G
−1
(τ )

] ˙̆It (τ ) · ˙̆It (τ )dτ � 0.

(6.18)

Note that

D(t) � −1

2

∫ ∞

0

[
d

dτ
l̇G
−1
(τ )

] ˙̆It (τ ) · ˙̆It (τ )dτ � 0. (6.19)

Let us further assume that there exists a non-negative α1 ∈ IR++, such that

l̈G(τ )+ α1 l̇G(τ ) � 0 ∀τ ∈ IR+. (6.20)

This yields

d

dτ
l̇G
−1
(τ ) � α1 l̇G

−1
(τ ) � 0, (6.21)

and, from (6.19),

D(t) � α1
(
�F (It )− φ(t)

)
. (6.22)

We can express a family of free energies using a simple generalization of the
above procedure. Consider, for a given integer n � 1,

�n(It ) = φ(t)+ (−1)n

2

∫

n

lG−1
n (τ )Ĭtn(τn) · Ĭtn(τn),

lGn(τ ) :=
dn

dτn
lG(τ ), Ĭtn(τ ) = dn

dτn
Ĭtn(τ ), (6.23)

∫

n

:=
∫ ∞

0
dτ1

∫ ∞

τ1

dτ2

∫ ∞

τ2

dτ3· · ·
∫ ∞

τn−1

dτn.

It is assumed that for all τ ,

(−1)n+1 lGn+1(τ ) � 0. (6.24)

It follows that

(−1)m lGm(τ) � 0, (6.25)
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wherem is any integer in the interval 0 < m � n. Using a generalization of (6.16):

d

dt
Ĭtn(τ ) = − lGn(τ )Ė(t)+ Ĭtn+1(τ ), (6.26)

and we can show that

d

dt
�n(It ) = T(t) · Ė(t)+ (−1)n−1

2

∫

n−1
lG−1
n (τn−1)Ĭtn(τn−1) · Ĭtn(τn−1)

− (−1)n

2

∫

n

[
d

dτ
lG−1
n (τn)

]
Ĭtn(τn) · Ĭtn(τn). (6.27)

For n = 1, the middle term on the right-hand side of (6.27) is understood to yield
the middle term on the right of (6.17)2. We have

D(t) = (−1)n

2

∫

n−1
lG−1
n (τn−1)Ĭtn(τn−1) · Ĭtn(τn−1)

+ (−1)n

2

∫

n

[
d

dτn
lG−1
n (τn)

]
Ĭtn(τn) · Ĭtn(τn) � 0,

(6.28)

which is non-negative since

(−1)n
d

dτ
lG−1
n (τ ) = (−1)n+1 lG−1

n (τ ) lGn+1(τ ) lG−1
n (τ ) � 0

by virtue of (6.24). Because the first term on the right of (6.28) is positive we have

D(t) � (−1)n

2

∫

n

[
d

dτn
lG−1
n (τn)

]
Ĭtn(τn) · Ĭtn(τn) � 0. (6.29)

Again, if we assume that an αn > 0 exists such that

(−1)n+1 [ lGn+1(τ )+ αn lGn(τ )
]

� 0, ∀τ ∈ IR+, (6.30)

then

(−)n d
dτ

lG−1
n (τ ) � (−1)nαn lGn(τ )

and (6.22) holds, with αn replacing α1.
We deduce from (6.25) that each�m, 0 < m � n is also a free energy if (6.24)

holds. Note that if lG is completely monotonic, in other words, if (6.25) holds for
all integersm � 0 [16, 18], then there is an infinite sequence of free energies given
by (6.24).

Finally, we consider

�0(I
t ) = φ(t)+ 1

2
l̆G
−1
(0)Ĭt (0) · Ĭt (0),
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where the second term is positive by virtue of the fact that l̆G
−1
(0) > 0 (see (4.6)).

By similar manipulations to those in (6.13) and (6.14), we obtain

lG(s1, s2) = l̆G(s1) l̆G
−1
(0) l̆G(s2)+ lG∞,

which clearly obeys (6.9). Also

IK(s1, s2) = l̇G(s1) l̆G
−1
(0) l̆G(s2)+ l̆G(s1) l̆G

−1
(0) l̇G(s2).

Let us assume that

l̇G(τ ) � 0 ∀τ ∈ IR+, (6.31)

which implies that l̆G(τ ) � 0, τ ∈ IR+, and further assume that there exists a
non-negative α0 ∈ IR++ such that

l̇G(τ )+ α0 l̆G(τ ) = 0 ∀τ ∈ IR+, (6.32)

so that l̆G consists of a single exponential term. We then have (6.22) as an equality
with 2α0 replacing α1, which implies a non-negative dissipation. Note that we can
write �0 as

�0(I
t ) = φ(t)+ 1

2
l̆G
−1
(0) (T(t)− lG∞E(t)) · (T(t)− lG∞E(t)) . (6.33)

In [18] (Section 4, Corollary 4.2), it is proved that (6.33) is a functional of the
minimal state (which is also a free energy first considered in [4]). They show that
it is a free energy if, and only if, lG is of exponential type with l̇G(0) � 04.

7. The minimum free energy in terms of Ĭt

Consider (5.3), referred to time t rather than the origin. It is convenient to write
it over IR− rather than IR+ so that we obtain

W(σ, P ) = 1
2
∫ 0
−∞
∫ 0
−∞ lG(|s − u|)Ėt (s) · Ėt (u)duds

− ∫ 0
−∞ It (−s) · Ėt (s) ds,

(7.1)

where Ėt (s) describes the process Ė(t + |s|), s ∈ IR− and It is given by (4.43).
We seek the maximum recoverable work respect to the set of processes where

Ėt (·) ∈ HG(IR−) given by

Ėt (s) = Ėtm(s)+ εe(s) , s ∈ IR−,

where ε is a real parameter and e ∈ HG(IR−). If Ėtm is the process for which we
obtain the maximum recoverable work, we have.

d
dε

[−W(σ, P )]ε=0 =

− ∫ 0
−∞
∫ 0
−∞ lG(|s − u|)Ėtm(u) · e(s) du ds + ∫ 0

−∞ It (−s) · e(s) ds = 0,

(7.2)
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From (7.1) by virtue of the arbitrariness of e(s), we obtain
∫ 0

−∞
lG(|s − u|)Ėtm(u) du = It (−s), s � 0. (7.3)

Equation (7.3) is a Wiener-Hopf equation, the solution of which maximizes the
recoverable work. The minimum free energy is given by (3.6). From (7.1), (7.3)
we obtain

ψm(Et ) = ψm(t) = 1

2

∫ 0

−∞

∫ 0

−∞
lG(|s − u|)Ėtm(u) · Ėtm(s)duds, (7.4)

where Ėtm is the solution of (7.3).
We now seek to solve (7.3). We can write it as

− lG∞E(t)+ lG∞Etm(−∞)+
∫ 0

−∞
l̆G(|s − u|)Ėtm(u) du = It (−s), s � 0.

(7.5)

Noting that

Ėtm(u) = − ∂

∂u
Etmr (u), Etmr (u) = Etm(u)− E(t),

and carrying out a partial integration relation (7.5) yields
∫ 0

−∞
∂

∂s
lG(|s − u|)Etmr (u) du− Ĭt (−s) = −Jt (s), s < 0, (7.6)

on utilizing (4.43). The quantity Jt is defined by (4.50), so that

Jt (s) =
∫ ∞

0

∂

∂s
lG(u+ |s|)Etr (u) du

=
∫ ∞

0

∂

∂s
lG(|s − u|)Etr (u) du, s < 0.

(7.7)

We will use this last form to define Jt on IR, which in fact corresponds to (4.57) or
Jt (s,−1) in the notation in the integrand of (4.52)1.

In order to solve the Wiener-Hopf equation (7.6), we write it in the form [35,
29]

∫ 0

−∞
∂

∂s
lG(|s − u|)Etmr (u) du+ Jt (s) = Rt (s), s ∈ IR, (7.8)

where Rt is, for the moment, unknown apart from the fact that

Rt (s) = 0, s ∈ IR−. (7.9)

Using (4.14), we take the Fourier transform of (7.8) to obtain

2i

ω
IH(ω)Et(m)(ω)+ JtF (ω) = Rt+(ω), (7.10)
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where Et(m)(ω) is the Fourier transform of the optimal relative continuation, related

to the optimal relative process. It is analytic on 	(+). Also, Rt+(ω), by virtue of
(7.9), is analytic in	(−). The behavior of JtF (ω,−1) for large ω is given by (4.54),
which is important in the present context. Any other value of λ could be used.
However, it is undesireable to choose JtF (ω) = Jt−(ω) (in other words, where the
extension is zero). This choice vanishes as ω−1 at large ω. Such weak decay to
zero causes convergence problems (which can in fact be overcome with care) in
integrals introduced later (see (7.19)). Recalling the factorization of IH(ω) given
by (4.26), it is clear that (7.10) may be written in the form

IH−(ω)Et(m)(ω)+ ω

2i

[
IH+(ω)

]−1 JtF (ω) = ω

2i

[
IH+(ω)

]−1 Rt+(ω),

(7.11)

if
[

IH+(ω)
]−1 exists, which is true in particular for ω ∈ IR\{0}. The factor ω

ensures that it is well-defined at the origin. We put

Pt (ω) :=
ω

2i

[
IH+(ω)

]−1 JtF (ω)

= pt−(ω)− pt+(ω), (7.12)

where pt±(ω) is analytic on 	∓ respectively. They can be written, with the aid of
the Plemelj formulae, in the form

pt±(ω) = 1

2πi

∫ ∞

−∞
Pt (ω′)
ω′ − ω∓ dω

′, (7.13)

the integral being convergent since JtF (ω) decays as ω−3 for large ω, or, more
strongly, if λ = 1. This step is of course identical to (4.30) and (4.31), as can be
seen from (4.53) for λ = −1. By means of a standard argument, [35, 29], we deduce
that

Et(m)(ω) = − [ IH−(ω)
]−1 pt−(ω). (7.14)

It follows from (4.54) and (7.13) that

pt−(ω) = 1

2πi

∫ ∞

−∞

ω′
2i
[

IH+(ω′)
]−1 Jt−(ω′)3

ω′ − ω+ dω′, (7.15)

where (see (A.11))

Jt−(ω)3 = Jt−(ω)+ Jt (0)
iω

− Jt(1)(0)

ω2 , Jt(1)(s):=
d

ds
Jt (s). (7.16)

The quantity Jt−(ω)3 is that part of Jt−(ω) with the terms decaying as ω−1, ω−2

removed. It is easy to show that the term Jt+(ω)3, where Jt−(ω)3+Jt+(ω)3 = JtF (ω),
does not contribute to pt−(ω). If λ is varied from −1, pt− is not affected. However,
there is no similar argument for pt+, which will change if λ is varied. If λ = −1,
(4.34) holds.
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It is convenient to use (7.13) rather than (7.15) in the sequel.
The minimum free energy is given by (4.33). Our objective is to write this

quantity in the time domain, as a quadratic form in Ĭt .
Let �t be the inverse Fourier transform of Pt . Then

Pt (ω) =
∫ ∞

−∞
�t (s)e−iωsds (7.17)

and

pt+(ω) = − ∫∞
0 �t (s)e−iωsds,

pt−(ω) = ∫ 0
−∞ �t (s)e−iωsds.

(7.18)

The quantity �t can be written more explicitly, by means of the Faltung theorem.
However, we first need to write Pt as the product of two functions both in L2(IR).
Let us divide and multiply by (ω−)2, omitting the superscript for factors in the
numerator, where it is irrelevant. Thus, we obtain

Pt (ω) =
[

IH+(ω)
]−1

2iω−
[
ω2JtF (ω)

]
, (7.19)

where both factors are in L2(IR) and where the first factor has all its singularities
in 	(+). We define

Jt(2)(s):=
d2

ds2 Jt (s) = − 1

2π

∫ ∞

−∞
ω2JtF (ω)e

iωsdω. (7.20)

Also, let us define IM ∈ Lin(Sym) by

IM(s):=
1

2π

∫ ∞

−∞

[
IH+(ω)

]−1

2iω− eiωsdω, s ∈ IR. (7.21)

The integrand has a quadratic singularity near the origin, owing to the explicit pole
term and the factor ω in IH+(ω) which is taken, for consistency, to be ω−. This
gives a finite contribution, which is easily calculated. The quantity IM vanishes for
s ∈ IR−−.

By the Faltung theorem, we have

�t (s) = −
∫ s

−∞
IM(s − u)Jt(2)(u)du. (7.22)

From (7.18) it is clear that only non-positive arguments of Jt(2) contribute to pt−.
Also, from (7.18) and Parseval’s theorem,

1

2π

∫ ∞

−∞
|pt−(ω)|2dω =

∫ 0

−∞
|�t (s)|2ds. (7.23)
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Extending the upper limit in (7.22) to zero and interchanging integrations, we have

ψm(t) = φ(t)+
∫ 0

−∞

∫ 0

−∞
Jt(2)(u) · IL(u, v)Jt(2)(v)dudv. (7.24)

where IL ∈ Lin(Sym) is given by

IL(u, v) :=
∫ 0

−∞
IM∗(s − u) IM(s − v)ds

=
∫ 0

max(u,v)
IM∗(s − u) IM(s − v)ds,

(7.25)

where IM∗ is the hermitean conjugate of IM, which also vanishes on IR−−.
Observe that

IL∗(u, v) = IL(v, u), (7.26)

which ensures that ψm is real. If IM(s1), IM∗(s2),∀ s1, s2 ∈ IR+, commute, then
IL is hermitean. Note that

IL(u, 0) = IL(0, v) = 0 ∀ u, v ∈ IR+ (7.27)

and also, since IM, IM∗ ∈ L2(IR+),

IL(u,−∞) = IL(−∞, v) = 0 ∀ u, v ∈ IR−−. (7.28)

Therefore, we can write (7.24) as

ψm(t) = φ(t)+
∫ 0

−∞

∫ 0

−∞
Jt(1)(u) · IL12(u, v)Jt(1)(v)dudv

IL12(u, v) = ∂2

∂u∂v
IL(u, v). (7.29)

It follows from (7.21) that the quantity IL12 will have singular delta distribution
terms. This can be avoided by using (7.24). Referring to (4.50), it can be written in
terms of Ĭt as

ψm(t) = φ(t)+
∫ ∞

0

∫ ∞

0
Ĭt(2)(u) · IK(u, v)Ĭt(2)(v)dudv, (7.30)

where

Ĭt(2)(s):=
d2

ds2 Ĭt (s) (7.31)

and

IK(u, v) = IL(−u,−v)
=
∫ min(u,v)

0
IM∗(u− s) IM(v − s)ds. (7.32)
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We now give an expression for the rate of dissipation. This quantity is given by
[37, 20]

Dm(t) = |K(t)|2, (7.33)

where

iK(t) = lim
ω→∞ωpt−(ω). (7.34)

A slightly different formula was given in [37, 20] in terms of qt−(ω), defined by
(4.31), which can easily be shown to be equivalent to (7.34). From (7.18)2, we
deduce with the aid of (A.11) that

K(t) = �t (0) = −
∫ 0

−∞
IM(−u)Jt(2)(u)du

= −
∫ ∞

0
IM(u)Ĭt(2)(u)du, (7.35)

on using (7.22) and (4.50). Therefore

Dm(t) =
∣∣∣∣

∫ ∞

0
IM(u)Ĭt(2)(u)du

∣∣∣∣

2

=
∫ ∞

0

∫ ∞

0
Ĭt(2)(u)IN(u, v)Ĭ

t
(2)(v)dudv

IN(u, v) := IM∗(u) IM(v).

(7.36)

8. Maximum free energy as a functional of Ĭt

We now consider the maximum free energy, defined in the general theory by
(3.8) or (3.10).

Definition 3.1 has been adopted for the free energies, and the set of such free
energies has been labelled by F . A slightly different definition (which takes a
free energy to be a lower potential for the work done on processes with respect
to a suitable norm) has been given in [18] (Section 2, Definition 2.2): the set of
functions obeying this definition was called F2( lG). There, lG appeared in order
to emphasize the circumstance that any definition of free energy is relative to a
given relaxation function. In [16], further progress was made. In particular, besides
a normalizing constant (which in our case is zero), it has been pointed out that the
quantity W̃ (E(t),Et ), defined in (4.21), is the maximal element in a suitable set of
functions. Such a set is denoted by F1( lG) and this is not, in general, coincident
with F2( lG): indeed, elements in F1( lG) need not be functions of state. The fact
that W̃ (E(t),Et ) is the maximal element of F1( lG), is no longer, in general, true
for free energies defined according to Definition 3.1, although this is certainly the
case when the minimal state coincides with the history-deformation pair.

Recent progress in the characterization of the maximal element of F2( lG) has
been achieved in [15]. There, the author characterizes the maximum free energy
by introducing the concept of relaxed work: this is the minimum work required
to approach a given history by continuations of another history. Provided that a
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suitable dissipation postulate holds, the relaxed work from the natural state, and
the opposite of the relaxed work to the natural state, are the maximum and the
minimum free energies, respectively. They both turn out to be functions of state.

Here, we take the initial state to be the zero state. Our objective is to derive an
(explicit) expression for this quantity, both in terms of the history and in terms of
Ĭt . There are two distinct cases related to those above: (i) where the maximum free
energy is equal to the work function; this occurs when the set of minimal states
(Definition 2.4) is a singleton; and (ii) when it is less than the work function, which
is true for materials for which the space of minimal states contains more than one
member.

It was shown in [29, 26] that the latter situation prevails for discrete spectrum
materials (the relaxation function is given by a sum of decaying exponentials),
by deriving and solving a Weiner-Hopf equation, subject to a constraint enforced
by a Lagrange multiplier function. A simpler, and more general argument, is now
developed.

For continuous spectrum materials (the relaxation function is given by an inte-
gral of a density function, with some continuity characteristics, multiplying a decay-
ing exponential), it is shown in [22] that the first situation applies.

A material can be characterized by the singularity structure of l̇GF on 	(+), as
can be seen, at least in the case where l̇GF is analytic at infinity, by evaluating

l̇G(s) = 1

2π

∫ ∞

−∞
l̇GF (ω)e

iωsdω (8.1)

by contour integration on	+, drawing the contours past the singularities to infinity.
The possible types of singularities are: isolated singularities, discontinuities

associated with branch cuts and essential singularities. The first type, if the poles
are simple and on the imaginary axis of 	(+), corresponds to sums of decaying
exponentials in l̇G. The argument here allows for general isolated singularities, so
that each element of l̇GF is a meromorphic function of ω, with a finite or even an
infinite number of singularities of various orders.2 This corresponds for example to
decaying exponentials multiplied by polynomials or convergent power series. This
is observed in the scalar case by multiple differentiations of l̇GF with simple poles
with respect to the positions of the poles. This corresponds to the differentiation of
l̇G(s)with respect to the coefficients of s in the exponentials. Also, the singularities

may be, in principle, anywhere on 	(+) but subject to the condition that l̇G be real
or that ˙̄lGF (ω) = l̇GF (−ω̄). This constraint in fact means that the singularities are
symmetric under reflection in the positive imaginary axis.

The second type yields integrals over exponentials which, for cuts along the
imaginary axis in 	(+), gives the standard continuous spectrum form. Again, the
branch cuts may now be anywhere on	(+), subject to the constraint that l̇G is real.

It should be pointed out that singularities off the imaginary axis may yield oscil-
latory behavior in l̇G, combined with relaxation behavior, because of trigonometric

2 If the number is infinite, they must form a divergent sequence. Finite points of accumu-
lation of singularities produce an essential singularity [53], which we exclude.



The Concept of a Minimal State in Viscoelasticity

functions mutiplying the exponentials. This is not excluded by thermodynamic
principles [42, 19].

Essential singularities at infinity of a certain kind are associated with finite mem-
ory, i.e., where l̇G(s), or some term in that function, vanishes for s > d > 0, the
quantity d being the duration of the memory [30]. For simplicity, such singularities
are excluded here.

Essential singularities at finite points on 	(+) are the remaining possibility. It
is difficult to imagine a choice of relaxation behavior that would generate such
behavior in l̇GF . Such singularities are excluded from consideration in this context.

One difference between isolated and branch-cut singularities is that the former
always have infinite behavior associated with them, while the latter are characterized
by generally finite discontinuities, though, in fact, infinities may occur at branch
points and indeed on the cut. However, there is the following clear-cut distinction
which is important in the present context.

Remark 8.1. If IF, generally a tensorial quantity, has isolated singularities at a set
of points, then IF−1 or more precisely its determinant, will have zeros at these
points. If IF has a branch cut between two branch points, then IF−1 will also have a
branch cut between these two branch points. The converse of these two statements
also holds.

In [29, 26], many different factorizations of IH were obtained (in [29], only the
scalar case was considered) by interchanging some or all of the zeros of det IH+
and det IH−. These were obtained under the assumption that the eigenspaces of
l̇G are time-independent, which implies that IH+ and IH− commute. In practical

terms, it would seem that we must make such an assumption in order to obtain
explicit representations of the factors. We will do so for purposes of the present
discussion. Two factorizations will be considered, that given by (4.26) and

IH(ω) = IH(e)+ (ω) IH(e)− (ω), IH(e)+ (ω) IH∗(e)
− (ω), (8.2)

where det IH(e)+ has all the zeros of det IH− and det IH(e)− has all the zeros of
det IH+. In other words, all the zeros have been interchanged. On individual ei-
genspaces, the manipulations are in effect those of the scalar case.

Let us write (4.40) and (4.41) in the following way: let (E(t),Et ) be a given
current strain, strain history couple. Then (E1(t),Et1) is in the same minimal state
as (E(t),Et ) if

Ed(t) = 0,
∫ ∞

0
l̇G(|s − u|)Etd (u)du = 0, s ∈ IR−, (8.3)

where Ed(t) = E1(t)−E(t), Etd (u) = Etr1(u)−Etr (u). We write (8.3)2 in the form

∫ ∞

0
l̇G(|s − u|)Etd (u)du = R(s), s ∈ IR++

= 0, s ∈ IR− (8.4)
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and take Fourier transforms, using (4.14), to obtain

2i

ω
IH(ω)Etd+(ω) = R+(ω). (8.5)

Equations (4.30) and (4.31) can now be utilized to write

2i

ω

[
IH(1)+ (ω)(ptd−(ω)− ptd+(ω))

]
= R+(ω), (8.6)

where the factorization IH(ω) = IH(1)+ (ω) IH(1)− (ω) can mean either (4.26) or (8.2),
and (cf. (4.31) and (7.13))

ptd±(ω) = 1

2πi

∫ ∞

−∞
IH(1)− (ω′)Etd+(ω′)dω′

ω′ − ω∓ . (8.7)

It was shown in [20] that 3

ptd−(ω) = 0, ω ∈ IR (8.8)

for the factorization (4.26) if (E(t),Et ) and (E1(t),Et1) are in the same minimal
state. The argument in [20] was extended to any other factorization based on an
interchange of zeros in [26] for the case of simple poles and zeros. It applies with-
out modification to the case where IH is a general memomorphic function with the
correct symmetries and behavior at zero and infinity. Thus, we have from (8.6)

R+(ω) = −2i

ω
IH(1)+ (ω)ptd+(ω), (8.9)

and, by virtue of (8.5),

Etd+(ω) = −
[

IH(1)− (ω)
]−1

ptd+(ω). (8.10)

Now Etd+, if it is non-zero, must be analytic in 	− and convergent at infinity in

this half-plane . Therefore, IH(1)− can have no branch cut singularities. It follows

from (4.27) and (8.2)2 that IH(1)+ and IH have the same property. Also, the zeros of

det IH(1)− (ω) must be in 	(+) which means that the factorization is given by (8.2).
We have thus

Proposition 8.2. For a material where l̇GF has time-independent eigenspaces, the
set of minimal states has more than one member only if l̇GF possesses no branch
cut singularities.

In other words, l̇GF can have only isolated singularities.
If l̇GF has branch cut singularities, then the set of minimum states is a singleton,

Etd is zero and the work function is the maximum free energy. In this case, the state
is defined by (E(t),Et ) and the work function is a function of state.

3 Actually qt
d−(ω) = 0, but (8.8) follows immediately from (8.3)1.
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We now seek the choice of state (E1(t),Et1) such that the work done to achieve
this state is least among members of the minimal state which has (E(t),Et ) as a
member. We have from (4.23) and by analogy with (4.34)

W̃
(
E1(t),Et1

) = W1(t) = φ(t)+ 1

2π

∫ ∞

−∞
Ētr1+(ω) · IH(ω)Etr1+(ω)

= φ(t)+ 1

2π

∫ ∞

−∞

[
|pt1−(ω)|2 + |pt1+(ω)|2

]
dω, (8.11)

where

pt1±(ω) = 1

2πi

∫ ∞

−∞
IH(e)− (ω′)Etr1+(ω′)dω′

ω′ − ω∓ . (8.12)

The minimum of W1, gives the maximum free energy (see (3.10)) [9, 27, 16, 29,
26] Now, recalling (8.8), we see pt1− is fixed by virtue of the fact that it is equal to
pte−, defined by (8.12) but with Etr1+ replaced by Etr+. However, pt1+ can be varied
and the choice which minimizes W1 is clearly

ptm+(ω) = 0, ω ∈ IR, (8.13)

where ptm+ is the optimal choice, corresponding to an optimal history Etm. Noting
that

ptd+(ω) = ptm+(ω)− pte+(ω) = −pte+(ω), (8.14)

we see (8.10) gives

Etm+(ω) = Etr+(ω)+
[

IH(e)− (ω)
]−1

pte+(ω)

=
[

IH(e)− (ω)
]−1 {

pte−(ω)− pte+(ω)+ pte+(ω)
}

=
[

IH(e)− (ω)
]−1

pte−(ω). (8.15)

Proposition 8.3. For materials where l̇GF has time-independent eigenspaces and
only isolated singularities, the maximum free energy is given by

ψM(t) = φ(t)+ 1

2π

∫ ∞

−∞
|pte−(ω)|2dω (8.16)

and the Fourier transformed optimal history associated with this quantity has the
form

Etm+(ω) =
[

IH(e)− (ω)
]−1

pte−(ω). (8.17)

where

pte−(ω) = 1

2πi

∫ ∞

−∞
IH(e)− (ω′)Et+(ω′)dω′

ω′ − ω+ . (8.18)

If l̇GF has branch cut singularities, then the maximum free energy is equal to the
work function.
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It remains to express ψM in terms of Ĭt . We can proceed very similarly to
Section 7. Instead of (7.12), we introduce

Pte(ω) :=
ω

2i

[
IH(e)+ (ω)

]−1
JtF (ω)

= IH(e)− (ω)Etr+(ω) (8.19)

by virtue of (4.53), taking JtF (ω) = JtF (ω,−1). The argument then goes through
unchanged, to yield

ψM(t) = φ(t)+
∫ ∞

0

∫ ∞

0
Ĭt(2)(u) · IKe(u, v)Ĭt(2)(v)dudv (8.20)

instead of (7.30), with

IKe(u, v) =
∫ min(u,v)

0
IM∗
e (u− s) IMe(v − s)ds,

IMe(s) :=
1

2π

∫ ∞

−∞

[
IH(e)+ (ω)

]−1

2iω− eiωsdω,

(8.21)

replacing (7.32) and (7.21).
Also, the rate of dissipation corresponding to ψM is given by

DM(t) =
∣∣∣∣

∫ ∞

0
IMe(u)Ĭt(2)(u)du

∣∣∣∣

2

=
∫ ∞

0

∫ ∞

0
Ĭt(2)(u)INe(u, v)Ĭ

t
(2)(v)dudv

INe(u, v) := IM∗
e (u) IMe(v)

(8.22)

instead of (7.36).

Remark 8.4. Similar representations can be given for the family of free energies
introduced in [29, 26] obtained by exchanging some but not all zeros in the factor-
ization and indeed generalizations of these to the case of non-simple poles.

Finally, for materials with branch-cut singularities, the maximum free energy,
which is the work function, is given by (4.23)1 or

W(t) = φ(t)+ 1

2π

∫ ∞

−∞
Ētr+(ω) · IH(ω)Etr+(ω)dω

= φ(t)+ 1

8π

∫ ∞

−∞
ω2J̄tF (ω) · [ IH(ω)]−1 JtF (ω)dω (8.23)

on comparing the two right-hand sides of (8.19). Let us define

IMh(s) = IMh(−s) := 1

2π

∫ ∞

−∞
[ IH(ω)]−1

ω2 eiωsdω. (8.24)



The Concept of a Minimal State in Viscoelasticity

Then

W(t) = φ(t)+ 1

4

∫ ∞

−∞

∫ ∞

−∞
Ĭt(2)(u) · IMh(u− v)Ĭt(2)(v)dudv. (8.25)

This depends on Ĭt defined on IR which is not a function of the minimal state, a
property which holds for Ĭt restricted to IR+ (see (4.43) and (4.44)). However, we
have Ĭt (s), s ∈ IR, given by (4.57) which is a function of the state (E(t),Et ). This
is the minimal state for the type of material under consideration.

9. Applications to initial and boundary value problems in linear
viscoelasticity

The usefulness of studying linear viscoelastic materials via the new state func-
tion It , instead of the history Et , becomes apparent when considering the partial
differential equations which describe the behavior of bodies composed of these
materials. In the classic approach, the problem is set up in the space-time domain
QT = B × (0, T ) by means of the equation:

ü(x, t) = ∇ · T(x, t), (9.1)

where T(x, t) is given by (4.2). Together with equation (9.1), initial and boundary
conditions are given by

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x),

ut=0(x, s) = u0(x, s), s ∈ IR+, x ∈ B,

u|∂B (x, s) = 0,

(9.2)

so that besides specifying u0(x) and u̇0(x) at the outset, it is also necessary to assign
the history u0(x, ·), which is a function defined for all x ∈ B in the time interval
IR+ . Thus, such an approach carries with it the conceptual difficulty of having to
assign all the past history of the displacement on the infinite interval (−∞, 0].

If we set up the problem using the new definition of state, then (9.1) and (9.2)
in the domain QT become, with the aid of (4.2) and (5.2),

ü(x, t) = ∇ · ( lG0(x)∇u(x, t)+
∫ ∞

0
l̇G(x, s)∇ut (x, s)ds)

= ∇ · ( lG0(x)∇u(x, t)+
∫ t

0
l̇G(x, s)∇ut (x, s)ds)− ∇ · Ĩ0(x, t), (9.3)

where, (see (4.45))

Ĩ0(x, τ ) = −
∫ ∞

0
l̇G(x, s + τ)∇ut=0(x, s)ds (9.4)
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and the initial and boundary conditions are now given by

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x),

Ĩt=0(x, τ ) = Ĩ0(x, τ ), τ ∈ (0, T ),

u|∂B (x, τ ) = 0.

(9.5)

It now appears that in order to study problem (9.3), (9.5) in the domainQT , besides
assigning initial conditions u0(x), u̇0(x) it suffices to give the function Ĩ0(x, ·), in
the interval (0, T ) only, instead of the whole past history u0(x, s), s ∈ IR+.

As we can see from (9.4), the function Ĩ0 is an observable quantity. It carries a
precise physical meaning: it represents the negative of the stress associated with the
null process E(·) = 0 on (0, τ ). It is therefore convenient that the initial condition
Ĩ0 is required only over the finite time interval (0, T ).

This new definition of state also has an advantage in the study of stability of
solutions where we consider (9.3), (9.5) in the domain Q = B × IR+. In fact, it
allows us to set up the problem in a very large space of initial conditions.

Usually, this differential problem is written in a weak sense, by a variational
form derived from a stationary principle. Now we show that the system (9.3), (9.5)
can be represented in a weak form by means of a virtual power principle. This new
framework allows us to pose the problem in natural spaces, related to the domain
of definition of the free energy given by the Brueur and Onat equation in [3],
namely (7.4). Moreover, it is possible to obtain existence, uniqueness and stability
theorems in more regular spaces.

The virtual power principle related to the system (9.3), (9.5 ) in the domain
Q∞ := 	× (0,+∞) assumes the following form:

∫ ∞

0

∫

B
(ut t (x, t) · ϕt (x, t)+ lG0(x)∇u(x, t) · ∇ϕt (x, t)

+
∫ t

0
l̇G(x, s)∇ut (x, s)ds · ∇ϕt (x, t))dxdt

=
∫ ∞

0

∫

B
Ĩ0(x, t) · ∇ϕt (x, t)dxdt, (9.6)

where a subscript time variable indicates differentiation with respect to that variable
and φt : Q∞ �→ IR3 is any “test” function. Before providing a precise definition
of a solution, we have to rewrite (9.6) in the equivalent form

∫ ∞

0

∫

B
(ut (x, t) · ϕt t (x, t)−

∫ t

0
lG(x, t − τ)∇uτ (x, τ )dτ · ∇ϕt (x, t))dxdt

= −
∫

B
ut (x, 0) · ϕt (x, 0)dx −

∫ ∞

0

∫

B
I0(x, t) · ∇ϕt (x, t)dxdt (9.7)

obtained from (9.6) after integration by parts with respect to both time variables,
where I0(x, t) = − lG(x, t)∇u(x, 0) + Ĩ0(x, t) (see (4.45)), assuming that
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ϕt (x,∞) = 0. Now we can consider for the system (9.7) the function v:=ut as
unknown and w:=ϕt as a test function. We then have

∫ ∞

0

∫

B
(v(x, t) · wt (x, t)−

∫ t

0
lG(x, t − τ)∇v(x, τ )dτ · ∇w(x, t))dxdt

= −
∫

B
v(x, 0) · w(x, 0)dx −

∫ ∞

0

∫

B
I0(x, t) · ∇wdxdt. (9.8)

This problem corresponds to the differential system

vt (x, t) = ∇ ·
∫ t

0
lG(x, t − τ)∇v(x, τ )dτ − ∇ · I0(x, t), (9.9)

with initial and boundary conditions

v(x, 0) = v0(x), v(x, t)|∂B = 0. (9.10)

The following frequency domain quantities and results will be used later. From
(4.17), (4.18), using the notation of (A.6) and l̆G+(x, ω) = lG+(x, ω)− 1

iω− lG∞(x),
we find that

lG+(x, ω) = 1

iω−
[

lG(x, 0)+ l̇GF (x, ω)
] = lGc(x, ω)− i lGs(x, ω), (9.11)

where, by virtue of (4.4),

lGc(x, ω) = − 1

ω
l̇Gs(x, ω) > 0. (9.12)

From (4.8), we have

lGc(x, ω) ∼ − l̇G0(x)

ω2 (9.13)

at large ω if l̇G(x, 0) < 04. Also, from (4.19),

lGs(x, ω) = 1

ω−
[

lG0(x)+ l̇Gc(x, ω)
]
, (9.14)

and at large ω

lGs(ω) ∼ lG0(x)
ω

. (9.15)

Thus

lGs(x, ω) = −ω lG0(x)
[

l̇G0(x)
]−1

lGc(x, ω)+ o

(
1

ω

)
. (9.16)

Now, we need to fix the domain of the functions u(x, t) and w(x, t).As we will
see, the free energy (7.4) characterizes the set of solutions.
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We introduce the spaces (the first related of course to (5.6), used in the argument
leading to (7.4), and its dual to (5.9))

HG(IR
+;H 1

0 (B)) :=

{
v ∈ L2

loc(IR
+;H 1

0 (B));
∫ ∞

0

∫ ∞

0

∫

B
lG(x,

∣∣τ − τ ′∣∣)∇v(x, τ ′)·∇v(x, τ )dxdτ ′dτ

= 1

π

∫ ∞

−∞

∫

B
lGc(x, ω)∇v(x, ω)·∇v(x, ω)dxdω < ∞

}
,

F(Q):=H 1
2 (IR+;L2(B)) ∩ HG(IR

+;H 1
0 (B)).

(9.17)

Moreover, by means of the state function I0, we introduce the linear functional on
HG(IR+;H 1

0 (B)) defined by

l(I0,∇v) :=
∫ ∞

0

∫

B
I0(x, τ ) · ∇v(x, τ )dxdτ.

From the Riesz theorem, there exists an element ∇vI0 ∈ H′
G(IR+;H 1

0 (B)) such
that for all ∇v(x, τ ) ∈ HG(IR+;H 1

0 (B))

l(I0,∇v) =
∫ ∞

0

∫ ∞

0

∫

B
lG(x,

∣∣τ − τ ′∣∣)∇vI0
(x, τ ′) · ∇v(x, τ )dxdτ ′dτ,

(9.18)

from which we define the function

F0(x, τ ) =
∫ ∞

0
lG(x,

∣∣τ − τ ′∣∣)∇vI0
(x, τ ′)dτ ′ , τ ∈ IR. (9.19)

Then, for any element I0, we have only one function F0 defined by (9.19 ) such
that I0(x, τ ) = F0(x, τ ), τ ∈ IR+ and moreover

l(I0,∇v) =
∫ ∞

0

∫

B
I0(x, τ ) · ∇v(x, τ )dxdτ

=
∫ ∞

0

∫

B
F0(x, τ ) · ∇v(x, τ )dxdτ

for all ∇v(x, τ ) ∈ HG(IR+;H 1
0 (B)) .

Let us consider the new function lG∗(x, s) : B × IR+→ Sym defined as
∫ ∞

−∞
lG(x, |t − s|) lG∗(x, |s|)ds = Iδ(t) ,

where δ is the Dirac measure, or

lGc(x, ω) lG∗
c (x, ω) = I,
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where I is the unit tensor. Now, we can introduce the spaces

SG(IR;L2(B)) :=

{
F0 ∈ L2

loc(IR;L2(B));
∫ ∞

−∞

∫ ∞

−∞

∫

B
lG∗(x,

∣∣τ − τ ′∣∣)F0(x, τ ′) · F0(x, τ )dxdτ ′dτ

= 1

2π

∫ ∞

−∞

∫

B
lG−1
c (x, ω)F0

F (x, ω) · F0
F (x, ω)dxdω < ∞

}

and

S̃G(IR;L2(B)) =
{

F0 ∈ SG(IR;L2(B));
∫ ∞

−∞

∫

B
(1 + |ω|) lG−1

c (x, ω)F
0
F (x, ω)·F0

F (x, ω)dxdω < ∞
}
.

The spaces HG and SG are Hilbert spaces with respect to the inner products

(v1, v2)HG
=
∫ ∞

0

∫ ∞

0

∫

B
lG(x,

∣
∣τ − τ ′∣∣)

× [∇v1(x, τ ′) · ∇v2(x, τ )+ ∇v1(x, τ ) · ∇υ2(x, τ ′)
]
dxdτ ′dτ,

(F0
1,F0

2)SG =
∫ ∞

−∞

∫ ∞

−∞

∫

B
lG∗(x,

∣∣τ − τ ′∣∣)F̆0
1(x, τ

′) · F̆0
2(x, τ )dxdτ ′dτ.

Finally, the space F(Q), defined by (9.17)2, will be an Hilbert space with
respect to the inner product

(v1, v2)F

= 1

2

∫ ∞

0

∫

B
(v1(x, t) · υ t2(x, t)+ v2(x, t) · vt1(x, t)) dxdt + (v1, v2)HG

= −1

2

∫

B
v1(x, 0) · v2(x, 0)dx + (v1, v2)HG

Definition 9.1. A function v ∈ F(Q) is called a virtual power solution of the prob-
lem (9.9)–(9.10) with data v0 ∈ L2(B), F0 ∈ SG(IR+;L2(B)), if it satisfies (9.8)
for any w ∈ F(Q).

In the following we suppose that 4

v0(x) = 0. (9.20)

4 These initial conditions are not restrictive. If v is a solution of (9.9) with initial data
v(x, 0) = v0(x), then the function z = v + w, with w ∈ C∞(IR+, H 1

0 (B)) and such that

w(x, 0) = −v0(x),

where w(x, ·) = 0 for every t > t0, satisfies a problem formally identical to (9.9)–(9.10)
with initial data

z(x, 0) = 0.
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Now we are in a position to give the following

Theorem 9.2. Assume that the kernel l̆G(x, ·) ∈ L1(IR+, L∞(B)) satisfies the ther-
modynamic condition ľGc(x, ω) > 0, for any ω ∈ IR Then there exists a unique
virtual power solution v ∈ F(Q) of the problem (9.9), (9.10) with v0(x) = 0 and
F0 ∈ S̃G(IR+;L2(B)).

Proof. Let us consider the Fourier transform of the system (9.9), (9.10)

−iωv+(x, ω)+ ∇ · lG+(x, ω)∇v+(x, ω) = ∇ · I0+(x, ω), (9.21)

with

v(x, 0) = 0, v+(x, ω)|∂B = 0. (9.22)

If for any fixed ω ∈ IR the bilinear form

a(v+(ω), v+(ω)) :=
∫

B

[
iωv+(x, ω) · v+(x, ω)

+ lGc(x, ω)∇v+(x, ω) · ∇v+(x, ω)
]
dx (9.23)

is bounded and coercive inH 1
0 (B), then the problem (9.21), (9.22) has one and only

one solution v+(·, ω) ∈ H 1
0 (B). It is easy to verify that the bilinear form a(·, ·) is

bounded. In order to demonstrate coercivity, we have to prove that the inequality
for any fixed ω ∈ IR

|a(v+(ω), v+(ω))| � k(ω) ‖v+(ω)‖2
H 1

0

holds for all v+ ∈ H 1
0 (B)where k(ω) is a positive scalar. From the definition (9.23)

we have

|a(v+(ω), v+(ω))| �
∫

B
lGc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dx

� k(ω) ‖v+(ω)‖2
H 1

0
,

where k(ω) is the least eigenvalue of lGc(x, ω), which is a symmetric, positive-defi-
nite tensor.

This proves that for any fixed ω 	= 0, the problem (9.21), (9.22) yields a solu-
tion v+ ∈ H 1

0 (B), if the supply ∇ · I0+(x, ω) is an element of H−1(B). Now, in
order to study the behavior of v+ when ω → ∞, we apply Parseval’s theorem to
(9.8), obtaining

∫ ∞

−∞

∫

B

{
v+(x, ω) · iωw+(x, ω)− lG+(x, ω)∇v+(x, ω) · ∇w+(x, ω)

}
dxdω

= −
∫ ∞

−∞

∫

B
F0+(x, ω) · ∇w+(x, ω)dxdω. (9.24)
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When w(x, t) = v(x, t) we have
∫ ∞

−∞

∫

B
lG+(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω

=
∫ ∞

−∞

∫

B
F0+(x, ω) · ∇v+(x, ω)dxdω, (9.25)

from which we get

∫ ∞

−∞

∫

B
lGc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω = π‖∇v+‖2

HG

� |
∫ ∞

−∞

∫

B
F0+(x, ω) · ∇v+(x, ω)dxdω|

= |
∫ ∞

−∞

∫

B
lG
− 1

2
c (x, ω)F0+(x, ω) · lG

1
2
c (x, ω)∇v+(x, ω)dxdω|

� π‖F0+‖SG‖∇v+‖HG
(9.26)

by Schwartz inequality. It follows that

∫ ∞

−∞

∫

B
lGc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω

�
∫ ∞

−∞

∫

B
lG−1
c (x, ω)F0+(x, ω) · F0+(x, ω)dxdω. (9.27)

Therefore, if F0 ∈ SG(IR+;L2(B))we have that v ∈ HG(IR+;H 1
0 (B)).Moreover,

from Poincare Lemma, there is a constant p(B) such that

p(B)
∫ ∞

−∞

∫

B
lGc(x, ω)v+(x, ω) · v+(x, ω)dxdω

�
∫ ∞

−∞

∫

B
lG−1
c (x, ω)F0+(x, ω) · F0+(x, ω)dxdω. (9.28)

Next, we consider in (9.24) w = i (signω) v+
∫ ∞

−∞

∫

B

{
v+(x, ω) · |ω| v+(x, ω)

+(signω) lGs(x, ω)∇v+(x, ω) · ∇v+(x, ω)
}
dxdω

= Im

{∫ ∞

−∞

∫

B
(signω)F0+(x, ω) · ∇v+(x, ω)dxdω

}
. (9.29)

Recalling (9.16) with l̇G0(x) 	= 04, we see there is a constant C such that
∣∣∣ lGs(x, ω)∇v+(bx, ω) · ∇v+(x, ω)

∣
∣∣

� C(1 + |ω|) lGc(x, ω)∇v+(x, ω) · ∇v+(x, ω). (9.30)
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Then, from (9.29) and (9.26), there is a constant C2 such that
∫ ∞

−∞

∫

B
|ω|v+(x, ω) · v+(x, ω)dxdω

� C2

∫ ∞

−∞

∫

B

[
(1 + |ω|) lGc(x, ω)∇v+(x, ω) · ∇v+(x, ω)

+ lG
_1

c (x, ω)F
0+(x, ω) · F0+(x, ω)

]
dxdω. (9.31)

Moreover, if we put in (9.24) w+(x, ω) = |ω| v+(x, ω) we obtain
∫ ∞

−∞

∫

B
|ω| lGc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω

=
∫ ∞

−∞

∫

B
|ω| F0+(x, ω) · ∇v+(x, ω)dxdω, (9.32)

from which, by a similar argument to that used in (9.26), we find that
∫ ∞

−∞

∫

B
|ω| lGc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω

�
∫ ∞

−∞

∫

B
lG

_1

c (x, ω) |ω| F0+(x, ω) · F0+(x, ω)dxdω. (9.33)

Then, by means of the equations (9.28)–(9.33), we obtain
∫ ∞

−∞

∫

B
|ω| v+(x, ω) · v+(x, ω)

+ |ω| lGc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω

� C

∫ ∞

−∞

∫

B
(1 + |ω|) lG

_1

c (x, ω)F0+(x, ω) · F0+(x, ω)dxdω, (9.34)

where C is a suitable constant.
Hence, if the supply F0 ∈ S̃G(IR+;L2(B)), then we see that the function v

belongs to F(Q) and it is a virtual power solution of the problem (9.9), (9.10) in
the sense of Definition 9.1. ��

Finally, we are interested in studying the properties of the function u(x, t),
which is related to v(x, t) by means of the system

u̇(x, t) = v(x, t), u(x, t)|∂B = 0 , where v ∈ HG(IR
+; H1

0(B)) (9.35)

and subject to the initial condition

u(x, 0) = u0(x) , x ∈ B.
Lemma 9.1. If l̇G(x, 0) 	= 0, l̇G(x, 0) < ∞, l̈G(x, ·) � 0, then the solution u of the
problem (9.35) must be an element of L2(IR+;H 1

0 (B)).
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Proof. Consider the functional on the space HG(IR+;H 1
0 (B))

1

2

∫ ∞

0

∫ ∞

0

∫

B
l̆G(x,

∣∣τ − τ ′∣∣)∇v(x, τ ′) · ∇v(x, τ )dxdτ ′dτ

= 1

2π

∫ ∞

−∞

∫

B
l̆Gc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dωdx

= 1

2π

∫ ∞

−∞

∫

B
l̆Gc(x, ω)∇ (iωu+(x, ω)

−u(x, 0)) · ∇(iωu+(x, ω)− u(x, 0))dωdx

� 1

π

∫ ∞

−∞

∫

B
(ω2 l̆Gc(x, ω)∇u+(x, ω) · ∇u+(x, ω)

+ l̆Gc(x, ω)∇u(x, 0) · ∇u(x, 0))dωdx

< ∞. (9.36)

Because
∫ ∞

−∞

∫

B
l̆Gc(x, ω)∇u(x, 0) · ∇u(x, 0)dxdω < ∞, (9.37)

then from (9.36) we have
∫ ∞

−∞

∫

B
(ω2 l̆Gc(x, ω)∇u+(x, ω) · ∇u+(x, ω)dxdω < ∞. (9.38)

Moreover, because (see (4.19)1, (4.24) and (4.25))

lim
ω→∞ω

2 l̆Gc(x, ω) = − l̇G(x, 0)

and l̇G(x, 0) 	= 0, l̇G(x, 0) < ∞, then by means of (9.37), ( 9.38) we obtain u ∈
L2(IR+;H 1

0 (B)). ��

10. Application of semi-group theory to linear viscoelastic systems

The differential system (9.3)1 can be rewritten in the form

u̇(x, t) = v(x, t)

v̇(x, t) = ∇ · ( lG∞∇u(x, t)+
∫ ∞

0
l̇G(x, s)∇utr (x, s)ds), (10.1)

u̇tr (x, s) = − d

ds
utr (x, s)− u̇(x, t),

where utr (x, s) = ut (x, s) − u(x, t). This system is supplemented by Dirichlet
boundary conditions

u|∂B = 0. (10.2)
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The problem (10.1)–(10.2) can be considered using semi-group theory, where
the state is given by the triple χ := (u, v,utr ) ∈ G = H 1

0 (B) × L2(B)×K. In
[11, 32, 25] the space K is the domain of definition of Graffi free energy ψG given
by (6.1), and the exponential decay of solutions is proved for initial conditions
χ ∈ G, under the following restrictions on the kernel lG:

l̇G(x, s) < 0, l̈G(x, s) � 0, for all (x, s) ∈ B × R+ (10.3)

(see Remark 6.1), and there exists α ∈ IR++ such that

∫

B
[

l̈G(x, s)+ α l̇G(x, s)
]∇u(x, s) · ∇u(x, s)dx � 0. (10.4)

When we use the function It (·, ·), the system (10.1) can be reduced to the
following problem:

u̇(x, t) = v(x, t)

v̇(x, t) = ∇ · [ lG∞(x)∇u(x, t)] − ∇ · Ĭt (x, 0),

d
dt

Ĭt (x, τ ) = d
dτ

Ĭt (x, τ )− l̆G(τ )∇v(x, t),

(10.5)

(see (4.46)), with the boundary condition (10.2), while the initial conditions are
given by

u(x, 0) = u0(x), v(x, 0) = v0(x), Ĭt=0(x, τ ) = Ĭ0(x, τ ), τ ∈ IR+. (10.6)

For this problem, the state is given by the triple χ := (u, v, Ĭt )which is an element
of the Hilbert space F :=H 1

0 (B)× L2(B)×H∗
F (IR

+;L2(B)) with inner product

〈u1(t), v1(t), Ĭt1; u2(t), v2(t), Ĭt2〉
=
∫

B
( lG∞(x)∇u1(x, t) · ∇u2(x, t)+ v1(x, t) · v2(x, t))dx

−
∫ ∞

0

∫

B
l̇G
−1
(x, τ )Ĭt1τ (x, τ ) · Ĭt2τ (x, τ )dxdτ (10.7)

Theorem 10.1. Under the hypotheses (10.3), (10.4), for any initial condition χ0 ∈
F , there exists a solution χ = (u, v, Ĭt ) such that

‖v(t)‖L2 + 2�F (It ) � Me−µt (‖v(0)‖L2 + 2�F (I0)),

where M and µ are suitable constants and (cf. (6.12))

�F (It ) = 1

2
lG∞(x)∇u(x, t) · ∇u(x, t)− 1

2

∫ ∞

0
l̇G
−1
(x, τ )Ĭtτ (x, τ ) · Ĭtτ (x, τ )dτ
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Proof. Consider the functional ζ defined by

ζ(v(t), It ) := 1

2
v2(x, t)+�F (It ), (10.8)

which satisfies the equality (see (6.15) and (6.17))

ζ̇ (x, t)− v(x, t) · v̇(x, t)− T(x, t) · ∇v(x, t)

= 1

2
l̇G
−1
(x, 0)Ĭtτ (x, 0) · Ĭtτ (x, 0)

−1

2

∫ ∞

0
l̇G
−1
(x, τ ) l̈G(x, τ ) l̇G

−1
(x, τ )Ĭtτ (x, τ ) · Ĭtτ (x, τ )dτ. (10.9)

By means of hypotheses (10.3), (10.4) and relations (9.1), (10.2) we obtain

∫

B
ζ̇ (x, t)dx � α1

2

∫

B

∫ ∞

0
l̇G
−1
(x, τ )Ĭtτ (x, τ ) · Ĭtτ (x, τ )dτdx � 0,

(10.10)

which is in effect (6.22). Thus, if we introduce the total energy

E(t) =
∫

B
ζ(x, t)dx, (10.11)

then

0 � E(t) � E(0).

Moreover, integrating (10.10) on (0,∞), we have

−α1

2

∫ ∞

0

∫

B

∫ ∞

0
l̇G
−1
(x, τ )Ĭtτ (x, τ ) · Ĭtτ (x, τ )dxdτdt � E(0). (10.12)

Hence, by Theorem 9.2 and Lemma 9.1 we have that the solution u is an element

of H
3
2 (IR+;L2(B)) ∩ L2(IR+;H 1

0 (B)) and

∫ ∞

0
E(t)dt =

∫ ∞

0

∫

B

{
1

2
v2(x, t)+�F (It (x))

}
dxdt

= 1

2

∫ ∞

0

∫

B

{
(v2(x, t)+ lG∞(x)∇u(x, t) · ∇u(x, t))

−
∫ ∞

0
l̇G
−1
(x, τ )Ĭtτ (x, τ ) · Ĭtτ (x, τ )dxdτ

}
dxdt < ∞. (10.13)

Now, following [32], we write the system (10.5) in the form

χ̇(t) = Aχ(t), (10.14)
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where A denotes the operator represented by the right-hand side of (10.5), which
is defined on the domain

D(A) =
{
χ ∈ F; v ∈ H 1

0 (B), and Ĭt ∈ L2(B) such that

−
∫ ∞

0

∫

B
l̇G
−1
(x, τ )Ĭt (x, τ ) · Ĭt (x, τ )dxdτ < ∞

}
.

Under the hypotheses (10.3) and (10.4), the operator A : D(A) → F is a
maximal dissipative operator on F , i.e. for A we may prove the following result.
��
Lemma 10.1. a 〈Aχ, χ〉 � 0, for any χ ∈ D(A);
b the range of A− I is F , where I is the identity operator.

Proof. We have, from (10.7), (10.8), (10.11) and (10.14),

E(t) = 1

2
〈χ(t), χ(t)〉 , d

dt
E(t) = 〈Aχ(t), χ(t)〉 . (10.15)

Integrating (10.9) over B, we obtain

〈Aχ(t), χ(t)〉 = 1

2

∫

B
l̇G
−1
(x, 0)Ĭtτ (x, 0) · Ĭtτ (x, 0)dx

−1

2

∫ ∞

0

∫

B
l̇G
−1
(x, τ ) l̈G(x, τ ) l̇G

−1
(x, τ )

× Ĭtτ (x, τ ) · Ĭtτ (x, τ )dτ � 0.

(10.16)

Moreover, under the hypotheses (10.4), we have from (10.10) that

〈Aχ(t), χ(t)〉 � α1

2

∫ ∞

0

∫

B
l̇G
−1
(x, τ )Itτ (x, τ ) · Itτ (x, τ )dxdτ � 0,

for any solution χ .
The proof of point b is analogous to the case considered by Dafermos in [11].

Hence, by means of the Lumer-Phillips Theorem (see Pazy [49]), the operator A
generates a strongly continuous semigroup of linear contraction operators S(t) on
F (see also [32]), so that the solutions of the system (10.5), (10.6) have the form

χ(t) = S(t)χ0.

Moreover, from (10.13) we obtain that the total energy

E(t) = 1

2
〈S(t)χ0, S(t)χ0〉

satisfies the restriction
∫ ∞

0
〈S(t)χ0, S(t)χ0〉 dt < ∞ (10.17)

for any χ0 ∈ F . Then D(A) is dense in F . ��
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Now we recall the following Lemma proved by Datko [10].

Lemma 10.2. Given a strongly continuous semigroup of linear operators S(t) on
a Hilbert space F , then there exist two constants C, γ such that

〈S(t)χ0, S(t)χ0〉 � C exp(−γ t) 〈χ0, χ0〉, for anyχ0 ∈ F (10.18)

if, and only if, the integral
∫∞

0 〈S(t)χ0, S(t)χ0〉 dt is convergent for any χ0 ∈ F .

Because, for any initial condition χ0 such that 1
2 〈χ0, χ0〉 = E(0) < ∞ we

have from (10.17) that
∫∞

0 〈S(t)χ0, S(t)χ0〉 dt < ∞, and the inequality (10.18)
follows.

Appendix: Definitions and notation

Let Sym be the space of symmetric second-order tensors acting on IR3 viz.
Sym := {M ∈ Lin(IR3) : M = M�}, where the superscript “�” denotes the
transpose. Operating on Sym is the space of the fourth-order tensors Lin(Sym).

It is well known that Sym is isomorphic to IR6. In particular, for every L,M ∈
Sym, if Ci , i = 1, · · · , 6 is an orthonormal basis of Sym with respect to the usual
inner product in Lin(IR3), namely tr(LM�), it is clear that the representation

L =
6∑

i=1

LiCi , M =
6∑

i=1

MiCi , (A.1)

is such that tr(LM�) = ∑6
i=1 LiMi . Therefore, we treat each tensor of Sym as a

vector in IR6 and denote by L · M the inner product between elements of Sym, viz.

L · M = tr(LM�) = tr(LM) =
6∑

i=1

LiMi (A.2)

and |M|2 = M · M. Consequently [45], any fourth-order tensor IK ∈ Lin(Sym)

will be identified with an element of Lin(IR6) by the representation

IK =
6∑

i,i=1

KijCi ⊗ Cj , (A.3)

and IK� means the transpose of IK as an element of Lin(IR6). The norm |IK| of
IK ∈ Lin(Sym) may be given by

|IK|2 = tr
(

IKIK�) =



6∑

i,j=1

KijKji



 .
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We also deal with complex valued tensors. Let	 be the complex plane and Sym(	)
and Lin(Sym(	)) the tensors represented by the forms (A.1) and (A.3) with
Li,Mi,Kij ∈ 	. Then, for L,M ∈ Sym(	), we have from (A.2),

L · M = tr
(
LM∗ ) = tr

(
LM

) =
6∑

i=1

LiMi, (A.4)

where the overhead bar indicates a complex conjugate and M∗ = M
�

is the her-
mitian conjugate.

The symbols IR+ and IR++ denote the non-negative reals and the strictly positive
reals, respectively, while IR− and IR−− denote the non-positive and strictly negative
reals.

For any function f : IR → V , where V is a finite-dimensional vector space,
in particular in the present context Sym or Lin(Sym), let fF , denote its Fourier
transform viz. fF (ω) = ∫∞

−∞ f (s)e−iωsds. Also, we define

f+(ω) =
∫ ∞

0
f (s)e−iωsds, f−(ω) =

∫ 0

−∞
f (s)e−iωsds (A.5)

fs(ω) =
∫ ∞

0
f (s) sinωs ds, fc(ω) =

∫ ∞

0
f (s) cosωs ds (A.6)

The relations defining fF and (A.6) are to be understood as applying to each com-
ponent of the tensor quantities involved. Only very weak assumptions need be
imposed on f for it to be Fourier-transformable. Indeed, f may even be a tempered
distribution. The Fourier transforms of functions of bounded variation are consid-
ered, for example, in [20]. In the present context, it is generally assumed that all
components of tensors in the time domain belong to L2(IR) (or L2(IR±) in the case
of f± so that in the frequency domain, they belong to L2(IR) (or L2(IR±)) [51, 50].
Further restrictions on the allowed function spaces are introduced where required.

For f : IR+ → V we can always extend the domain of f to IR, by considering
its causal extension viz.

f (s) =






f (s) for s � 0,

0 for s < 0,

(A.7)

in which case

fF (ω) = f+(ω) = fc(ω)− ifs(ω). (A.8)

We shall need to consider the Fourier transform of functions that do not go to
zero at large times and thus do not belong to L2 for the appropriate domain. In
particular, let f (s) in (A.7) be given by a constant a for all s. The standard proce-
dure is adopted of introducing an exponential decay factor, calculating the Fourier
transform and then letting the time decay constant tend to infinity. Thus, we obtain
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f+(ω) = a

iω− ,

ω− = lim
α→0

(ω − iα). (A.9)

The corresponding result for a constant function defined on IR− is obtained by
taking the complex conjugates of this relationship. Also, if f is a function defined
on IR− and if lims→−∞ f (s) = b, the components of the function g : IR− → V
defined by g(s) := f (s)− b belong to L2(IR+), then

f−(ω) = g−(ω)− b

iω+ . (A.10)

Again, taking complex conjugates gives the result for functions defined on IR+.
This procedure amounts to defining the Fourier transform of such functions as the
limit of the transforms of a sequence of functions inL2. The limit is to be taken after
integrations overω are carried out if theω−1 results in a singularity in the integrand.
Generally, in the present application, the ω−1 produces no such singularity and the
limiting process is redundant.

If f±(ω) is analytic at infinity, and f is differentiable N times at the origin,
then we have the asymptotic behavior

f±(ω) −→
ω→∞ ±

N∑

n=0

f (n)(0)

(iω)n+1 +O

(
1

ωN+1

)
, (A.11)

where f (n) is the nth derivative of f . Thus

fc(ω)
−→
ω→∞

N∑

n odd

f (n)(0)
(iω)n+1 +O

(
1

ωN+1

)
,

fs(ω)
−→
ω→∞ i

N∑

n even

f (n)(0)
(iω)n+1 +O

(
1

ωN+1

)
. (A.12)

The complex ω plane, denoted by 	, will play an important role in our discus-
sions. We define the following sets:

	+ = {ζ ∈ 	 : Imζ � 0
}
, 	(+) = {ζ ∈ 	 : Imζ > 0} . (A.13)

Analogous meanings are assigned to 	− and 	(−).
The quantities f± defined by (A.6) are analytic in	(∓), respectively. This ana-

lyticity is extended by assumption to 	∓. The function f+ may be defined by
(A.6) and analytic on a portion of 	+ if, for example, f decays exponentially at
large times. Over the remaining portion of 	+, on which the integral definition is
meaningless, f+ is defined by analytic continuation.
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