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Abstract

Motivated by applications devoted to study the behavior of steel and aluminum alloys columns\ inelastic
Shanley!like models have been extensively studied in the literature\ mainly to investigate buckling and post
buckling problems "see Sewell\ 0860^ Hutchinson\ 0863 for a complete review#[

On the other hand\ recent papers discussing geotechnical problems point out that those models may be
useful for the study of the essential features of the equilibrium of towers[ In this case\ the structure|s proper
weight "which is a conservative load with constant magnitude#\ and the verticality imperfection\ appear to
be responsible for the leaning evolution\ as well as the time variation of the mechanical property of the soil[

Throughout this paper\ a {T| shaped rigid rod on two no!tension viscoplastic springs under constant load
with initial imperfection is considered[ Under fairly general assumptions\ a viscoplastic constitutive law is
derived as a particular case of the theory developed in "Gurtin et al[\ 0879#\ studying its behavior under
loading processes[ By virtue of a time rescaling procedure\ extreme retardation leads to determine a yielding
parameter\ which allows to distinguish between viscoelastic and viscoplastic ranges[

For all the states attained by the rod\ explicit expressions for the two displacement parameters charac!
terizing its evolution are given[ Noting that failure may occur if the reaction of one spring goes to zero\
su.cient conditions under which no bifurcation and no failure occur are given for all the phases\ leading so
to determine the minimum upper bound for the load parameter[ This new result turns out to depend only
on the relaxation surface parameters at equilibrium\ irrespective of the behavior under non!zero _nite
deformation velocities[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Studies about discrete and continuum Shanley!like models had a great development from the
late 39s up to 59s "Shanley\ 0836^ Hill\ 0859^ Ho}\ 0843\ 0845\ 0847^ Libove\ 0841^ Rabotnov and
Shesterikov\ 0846^ Duberg\ 0851^ Kempner\ 0851^ Sewell\ 0860 and the references cited therein#\
motivated by the analysis of the inelastic buckling of steel and aluminum alloy columns\ mainly
for aeronautical and mechanical applications[
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The _rst studies about this problem started at the end of the last century "Engesser\ 0778^
Conside�re\ 0780#\ but Von Ka�rma�n "0809# gave the _rst rational derivation of an estimate of the
bifurcation load[ In this case\ considering elastoplastic!hardening behavior of the material\ and
denoting by K and H the moduli in the elastic and plastic range\ Von Ka�rma�n found that the
critical load depends on the reduced modulus 1KH:"K¦H#[ In the early 19s\ on the basis of
experimental observations "Basquin\ 0813^ Duberg\ 0851# it was recognized that a more reliable
prediction of the bifurcation value of the load could be obtained by replacing the reduced modulus
by the hardening "or tangent# modulus H[ This result was in agreement with the Engesser|s
conjecture made in 0778[ The explanation of this fact was given in a paper of Shanley "0836#\
where it is shown that the hidden assumption present in the Von Ka�rma�n|s analysis is that the
load was considered constant[ More recently\ for Shanley!like elastoplastic models\ post!buckling
analyses have been worked out by many authors too "see Hutchinson\ 0863^ Triantafylldis\ 0872^
Cimetie�re and Le�ger\ 0885 among others#[

However\ in order to re_ne the predictions obtained by elastoplastic constitutive equations\
starting from the 49s viscoelastic and viscoplastic buckling of columns have been extensively
investigated "Ho}\ 0843\ 0845\ 0847^ Kempner\ 0851^ Rabotnov\ 0858^ Bazant and Cedolin\ 0880
and the references cited therein#[ These studies have essentially been carried out starting from
di}erent incremental creep power laws\ and their main result is the statement of the so!called
critical time of the system[ This concept was associated either to the time needed to reach a
bifurcation point\ or to the time resulting in an in_nite de~ection "Rabotnov and Shesterikov\
0846^ Rabotnov\ 0858#\ although geometrical non!linearity was disregarded[ In Vinogradov "0874#
these e}ects were taken into account\ despite only a linear viscoelastic constitutive law was
considered\ resulting in an approximate treatment of the convolution integral operator[

Besides the analyses cited above\ many models and theories have been developed in vis!
coplasticity "Chaboche and Rousselier\ 0872^ Chaboche\ 0882^ Cernocky and Krempl\ 0868^
Cristescu and Suliciu\ 0871^ Gurtin et al[\ 0879^ Haupt\ 0881\ 0882^ Kratochvil and Dillon\ 0858^
Krempl\ 0864^ Lubliner\ 0862^ Malinin and Kandjinsky\ 0861^ Naghdi and Murch\ 0852^ Oka et
al[\ 0877^ Odqvist\ 0855^ Perzyna\ 0852\ 0855^ Rzhanitsyn\ 0857^ Tsamakis\ 0885#\ but\ contrary
to the viscoelasticity\ where the unifying e}ort has led to a general formulation "Coleman and
Noll\ 0850^ Gurtin and Sternberg\ 0851^ Day\ 0861^ Dill\ 0864^ Fabrizio et al[\ 0883^ Del Piero and
Deseri\ 0886#\ without leading to a uni_ed theory[

For the reasons outlined above\ it is understandable why\ even for simple models like that
examined in this paper\ a fully coherent approach to the viscoplastic equilibrium problem has not
yet been established[ The di.culties to overcome can be summarized as follows]

"a# in performing buckling analyses the variation of the load|s magnitude should be taken into
account^

"b# many theories of viscoplasticity can be likewise considered to hold^
"c# {small| geometrical non!linearity is su.ciently accurate to bring up bifurcation points of the

system "the meaning of the attribute {small| will be clari_ed in the next section#[ However\ it
is worth noting that this assumption is not compatible with the traditional concept of critical
time[

Although the study of buckling was crucial for problems related to aeronautical applications\
where the statement "a# plays a key role\ there are problems in geotechnical engineering in which
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the variation of the magnitude of the external actions is not so meaningful[ This circumstance
occurs for the equilibrium problem of leaning towers "Burland and Viggiani\ 0883^ Hambly\ 0874^
Heyman\ 0881^ Lancellotta\ 0882#\ where the self weight of the construction and the initial
imperfection of verticality appear to be the most important variables driving the evolution of the
leaning[ Moreover\ the time evolution of the mechanical properties of the soil is a crucial point to
consider for an accurate description of the phenomenon "Nova and Montrasio\ 0884^ Cheney et
al[\ 0880#[

Then\ a viscoplastic Shanley!like model under constant load seems to be the simpler one capable
to point out the essential features of this problem[ In the paper\ a {T| shaped {slender| rigid rod
simply supported by two springs having such a type of constitutive law is considered\ where the
meaning of {slender|\ the simple kinematics and the equilibrium problem are outlined in Section 1[
Moreover\ a conservative constant external load is considered applied in the center of gravity of
the system\ and an initial imperfection is assumed to be present starting from the beginning of the
leaning evolution[

The constitutive law is introduced in Section 2[ Among the theories developed for viscoplasticity\
the one formerly introduced by Lubliner "0862# in a more general context\ is considered here in its
one!dimensional form stated by Gurtin et al[ "0879#] in this theory the stress evolution equation
may be governed by a piecewise smooth relaxation surface in the state space\ so that both the
viscoelastic and viscoplastic ranges are described by this constitutive law[ A piecewise quasi!linear
form of that surface is constructed in Section 2\ to get a model which reproduces the property of
rate sensitivity of the yielding threshold[ Loading processes permit to use the constitutive law in
its integral form\ in terms of an appropriate choice of the stressÐstrain measures[ A real parameter
associated to the yielding can be determined by the condition that the extreme retardation of the
stress of the more compressed spring becomes equal to the equilibrium yielding stress[

In Section 3\ the evolution of the system is studied starting from the viscoelastic behavior[ A
concept of failure\ associated with the ultimate rotation achievable by the system when one spring
is totally unloaded\ is introduced[ The assumption related to this concept is that no!tension is
supported by the springs\ as it is rather common when unilateral soilÐstructure interaction is
considered[ It is worth noting that the investigation of the extreme equilibrium conditions leading
to the failure of the system has the same importance of the characterization of the bifurcation[
Values of the load parameter at bifurcation and failure are computed in the viscoelastic phase\ and
a su.cient condition under which the listed phenomena do not arise is given[ If the external load
is lower than the minimum between those values\ the system can enter the viscoplastic phase\ and
we call such a load admissible[

Section 4 is devoted _rst of all to study the yielding occurrence[ The evaluation of the yielding
parameter allows not only to calculate explicitly the e}ective yielding value of the reaction in the
more compressed spring\ but also to set a bilateral delimitation of it\ which does not depend on
the yielding parameter itself[

In the same section\ the equilibrium equations are studied making use of the Laplace!transform
technique[ By this way\ it is possible to have the explicit expression of the solution "see Appendix
C#\ and to characterize directly the asymptotic behavior of the system[ This is worked out in
Section 5\ where\ _rst of all\ a su.cient condition for the uniqueness of the solution is given in
terms of the Von Ka�rma�n critical load associated to the reduced equilibrium modulus[ Moreover\
it is shown that this value of the load parameter does not guarantee whether the failure of the



A[ Benedetti\ L[ Deseri : International Journal of Solids and Structures 25 "0888# 4196Ð41214109

system could occur[ As a consequence\ the ultimate value of the rotation can be attained in a _nite
time only if the external load is admissible and lower than the Von Ka�rma�n bifurcation value[ In
this sense\ admissible values of the load for which failure does not arise neither in a _nite time
"which will be called critical time#\ nor asymptotically\ will be de_ned attainable[

Finally\ a su.cient condition of attainability is given[ The load parameter which appears in this
condition is given by the sum of the Shanley critical load\ associated to the equilibrium hardening
modulus\ and a positive term which depends linearly on the equilibrium yielding stress and on the
module|s ratio in the viscoelastic and viscoplastic phases[ For this reason the above!mentioned
results are fairly general\ as they do not depend on the particular expression for the relaxation
surface appearing in the constitutive equation[

1[ Compatibility and equilibrium equations

Here we consider a slender {T| shaped rigid!rod "Fig[ 0#[ supported by two no!tension springs
having a viscoelastoÐplastic hardening behavior\ described by the constitutive equation discussed
in Section 2[ The attribute slender means that the following assumption is veri_ed]

fL ð 0\ "I#

where the parameter fL is de_ned as follows]

fL M
B

1hG

[ "1[0#

In particular\ we take into account the initial out of verticality f9 × 9 of the rod axis\ which is
assumed small in the sense that the following inequality holds]

f9

fL

ð 0[ "II#

A more accurate analysis which takes into account exact geometrical non!linearity according to
Cimetie�re and Le�ger "0885# may be done removing assumption "I# and replacing ð by ³ in "II#[
We denote with f"t# the present value of the additional rotation\ and a part from the total rotation
f9¦f"t#\ the con_guration of the system is uniquely determined by the knowledge of the present
value u"t# of the vertical displacement of the base middle point[ The simple kinematics of the
system can be described by the compatibility equations for the springs]

E0"t# � u"t#−
B
1

f"t#\ "1[1#

E1"t# � u"t#¦
B
1

f"t#[ "1[2#

If N0 and N1 are the reactions in the springs\ positive if in compression\ by assumption "I# the
linear approximation of the geometrical e}ects can be taken into account\ so that the equilibrium
equations become]
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Fig[ 0[ Geometry and data of the {T| shaped Shanley column with viscoplastic springs[

N0"t#¦N1"t# � W

B
1

ð−N0"t#¦N1"t#Ł � WhG ðf9¦f"t#Ł\ "1[3#

leading to the following expressions]

N0"t# �
W
1 60−

1hG

B
ðf9¦f"t#Ł7\ "1[4#

N1"t# �
W
1 60¦

1hG

B
ðf9¦f"t#Ł7[ "1[5#

It is worth remarking that if tŁ f"t# is positive for every t\ by eqn "1[5#\ we have
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N1"t# −
W
1

[ "1[6#

Moreover\ if tŁ f"t# is also monotonic increasing\ the function tŁN1"t# has the same behavior
and this ensures the impossibility of unloading after yielding[

Furthermore\ since no!tension springs are considered\ we say that the ultimate limit equilibrium
condition of the system occurs if and only if the less compressed spring reaches the null value[
Using "1[0# and the _rst of "1[3#\ this condition allows us to de_ne the ultimate rotation fu as

f9¦fu M fL "1[7#

By eqn "1[4#\ the monotonicity of tŁ f"t# implies that tŁN0"t# is monotonic decreasing\ thus
this function does not attain the null value during the evolution of the system if and only if

N1"t# ¾ W "1[8#

for every t[ If the ultimate limit equilibrium condition is reached\ "1[8# is veri_ed as an equality\
and this would arise either at a _nite instant of time\ and we say that there exists a critical time of
failure for the system\ or asymptotically in the limit when t goes to in_nity[ In the traditional
literature\ the notion of critical time is associated with the occurrence of in_nite de~ection of a
system\ even if exact geometrical non!linearity is left out[ More precisely\ in the present context
the critical time is related to the loss of equilibrium of the system itself\ which is allowed to
reach the ultimate rotation de_ned above[ The asymptotic failure condition can be equivalently
investigated by comparison between f"�# and fu\ being f"�# the _nite asymptotic value of
tŁ f"t#\ which does exist because eqn "1[5# holds\ and N1"�# ¾ W according to "1[8#[ If this is
the case\ it is possible to compute the value WÞ �

U "f9# of the external load associated to the
asymptotic failure of the system[

On the other hand\ though the ultimate equilibrium condition must be avoided\ the external
load has also to be small enough to guarantee that no equilibrium bifurcation phenomena occur
during the evolution[ Thus\ the minimum upper!bound WÞ of the external load has to be determined
in such a way that if the following inequality is satis_ed

9 ³ W ³ WÞ \ "III#

the uniqueness of the equilibrated con_guration is ensured for any t × 9 and no failure occurs[

2[ Constitutive equation

In the present section we consider a constitutive equation for materials with viscoelastic and
viscoplastic ranges[ If with E"t# we denote the present value of the deformation\ and with sŁ Et"s#
M E"t−s#\ 9 ³ s ³ ¦�\ the deformation history up to the time t\ we assume that even in the
viscoplastic range the stress depends linearly on both the entries of the pair "E"t#\ Et"=##[ The
response functional of the one!dimensional linear viscoelastic material is given by the classical
BoltzmannÐVolterra equation
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N"t# � K = E"t#¦g
¦�

9

Gþ"s# = Et"s# ds\ "2[0#

where K is the instantaneous elastic modulus\ and sŁGþ"s# is the derivative of the relaxation
function of the material[ In a recent paper "Del Piero and Deseri\ 0884# some a priori restrictions
on G have been deduced in the three!dimensional case\ as consequences of some properties of the
work done on particular classes of processes\ by assuming sŁ Et"s#\ 9 ³ s ³ ¦�\ of bounded
variation for any t\ and Gþ integrable[

The particularization of some of the previously cited restrictions to the one!dimensional case
leads to the inequalities]

K� × 9^ "IV#

K−K� × 9[ "V#

In the following we will consider G of exponential type\ i[e[

G"t−r# � K�¦KÞ e−"t−r#a\ "2[1#

−� ³ r ³ t\ where KÞ M K−K� and a is a positive real[
In Del Piero and Deseri "0886#\ the concepts of states and processes for the three!dimensional

linear viscoelastic materials have been properly introduced and discussed[ In particular\ it has been
shown that the state of linear viscoelastic materials characterized by relaxation functions of
exponential type is determined by the knowledge of the pair "N"t#\ E"t##\ formed by the present
values of the stress and of the deformation[ In other words\ as it is well known\ linear viscoelastic
materials of integral type with exponential relaxation function can be viewed as rate!type linear
viscoelastic ones "Gurtin et al[\ 0879#[ By substitution of "2[1# into "2[0#\ a di}erentiation with
respect to t of eqn "2[1# leads to the following equation]

Nþ "t#−KEþ"t# � Ga"N"t#\ E"t##\ "2[2#

after setting]

Ga"N"t#\ E"t## M −a"N"t#−K�E"t##[ "2[3#

In the model Ga is the so!called relaxation surface and it is de_ned in the state|s space[ Lubliner
formerly introduced this concept in 0862 in a more general context\ though this denomination has
been introduced in Gurtin et al[ "0879#[ It is worth remarking that in Del Piero and Deseri "0884\
Section 6# it has been shown that the function tŁN"t#−K = E"t# is di}erentiable even in the case
in which sŁ Et"s#\ 9 ³ s ³ ¦�\ is a function of bounded variation for every t[

Many constitutive models have been presented in the literature\ concerning viscoplasticity
"Perzyna\ 0852^ Lubliner\ 0862^ Gurtin et al[\ 0879#^ in particular\ as Lubliner noted in 0862\ the
notion of relaxation surface overcomes the introduction of the concept of yield surface\ which is
typical of classical plasticity[ In fact\ the existence of that surface is not needed\ because an
appropriate choice of the state|s functions appearing in the evolution equation takes into account
any yielding e}ect[ Moreover\ according to the theory mentioned above\ if the relaxation surface
is a smooth function as in "2[3#\ eqn "2[2# outlines a viscoelastic behavior^ on the other hand\ if
that surface is piecewise smooth\ "2[2# can reproduce viscoplastic behavior[ In order to characterize
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loading and unloading processes\ a scalar!valued linear function of the deformation velocity must
be introduced "Lubliner\ 0862# and in the present context\ this function is coincident with the time
derivative of the stress[ Explicit examples which _t with the classical approach to viscoplasticity\
and with the one discussed in Haupt "0881#\ are given in Cernocky and Krempl "0868#\ Tsakmakis
"0885#[

Following the scheme outlined above\ we introduce a constitutive parameter Nye that represents
the equilibrium yielding threshold\ and new measures for the stress and strain]

S"t# M =N"t# =−Nye\ "2[4#

D"t# M =E"t# =−K−0
� Nye[ "2[5#

If we denote with Ny × 9 the yielding threshold of the material subjected to a given history\ the
corresponding modi_ed stress can be de_ned as

Sy M Ny−Nye\ "2[6#

so that the stress part exceeding the yielding value holds

S�"t# M S"t#−Sy[ "2[7#

It is worth noting that Ny is not prescribed\ and the relationship between Nye and Ny must be
determined] indeed this does depend on the past history and on the present value of the deformation[
In analogy with eqn "2[2#\ the governing equation for evolution for the new measure of the stress
takes the form

Sþ"t#−KDþ "t# � G"S"t#\ D"t##\ "2[8#

where

G"S"t#\ D"t## M 6
Ga"S"t#\ D"t## for S�"t# ³ 9\ or S�"t# − 9 and Sþ"t# ³ 9

Gb"S"t#\ D"t## for S�"t# − 9\ and Sþ"t# − 9
[ "2[09#

The plastic part of the relaxation surface is de_ned as follows]

Gb"S"t#\ D"t## M −b"S"t#−H�D"t##−L"Sy\ Dy\ t#\ "2[00#

where L is a function whose explicit expression will be given in Section 4 such that its limit when
the velocity goes to zero is zero[ Moreover\ b and H� are positive constants such that]

K−K� × K�−H� × 9\

a × b\

H� × 9[ "VI#

In order to investigate the properties of the constitutive eqn "2[8#\ we can follow a time rescaling
procedure\ as discussed in Del Piero and Deseri "0884\ Section 2#[ Using the monotonicity property
of this procedure we can order processes with di}erent velocity and assess the limit when this last
goes to zero "see Appendix A#[ In this case by "2[3#\ "2[09#\ and "2[00#\ we obtain]
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9 � 6
S"t#−K�D"t# for S"t# ³ 9\ or S"t# − 9 and Sþ"t# ¾ 9

S"t#−H�D"t# for S"t# − 9 and Sþ"t# × 9
[ "2[01#

This equation describes a piecewise linear path in the space of the states\ which is crossed only in
the limit for null velocity and for this reason it is called equilibrium path[ It is worth noting that
the variable t assumes no longer the meaning of time but that of a real parameter driving a classical
elastoplastic behavior[ The value t � ty in which Ny � Nye\ i[e[ Sy � S"ty# � 9 in "2[01#\ can be
de_ned solving =N"ty# = � Nye when N belongs to the locus described by "2[01#[

Corresponding to Nye\ the values of the deformation restricted to the same locus hold]

E"ty# � 2K−0
� Nye[ "2[02#

Further\ if we consider the time rescaling de_ning the map gŁNg"t# as in eqn "A4# of Appendix
A\ the equilibrium limit for the yielding stress comes out directly from an in_nitely delayed
evolution map]

N�"ty# M lim
g:¦�

Ng"ty#^ "2[03#

because using Ng evaluated for t � ty we obtain the value of the limit as K�E"ty#\ we can de_ne

=N�"ty# = � Nye[ "2[04#

It is worth remarking that for every _nite value of the mapping parameter g we have =Ng"ty# = × Nye\
and only if g goes to in_nity we arrive at the equality "2[04#[ This limit and the sorting e}ect of the
parameter g emphasize the rate sensitivity of the yielding threshold "cf rel[ "A[6# in Appendix A#[
In particular\ by choosing g � 0\ the de_nitions of S and of S� lead to the conclusion that
Ny � =N"ty# = and the material behaves as a viscoplastic one only if the absolute value of the stress
is greater than Ny[ This threshold is crossed if the corresponding relaxed stress\ computed and
K�E"t#\ is greater or equal than Nye[

Assuming a constant velocity deformation history\ the constitutive law discussed above exhibits
a quasi!bilinear stress evolution as shown in Fig[ 1[ An analogous behavior has been extensively
discussed in Cernocky and Krempl "0868#\ in which the non!linearity of the constitutive relation
was taken into account by means of the explicit dependence of the relaxation function G on the
present value of the stress[

When unloading processes do not occur\ eqns "2[8# and "2[09# are equivalent to describe the
responses of a piecewise linear viscoelastic material with the following relaxation function

G"t# � 6
K�¦KÞ e−ta for 9 ¾ t ¾ ty

H�¦HÞ e−tb for t × ty
"2[05#

where the measure of stress and strain are de_ned as in "2[4#\ "2[5#\ and this agrees with Krempl
"0864# and Cernocky and Krempl "0868#\ who noted a rather similar behavior but in di}erent
contexts[

In the following we will consider deformation histories di}erent from zero after a given _nite
instant\ which will be taken as the zero time value[

Both the above!mentioned assumptions imply that E"r# � 9 for −� ³ r ³ 9\ and the defor!
mation histories appearing in "2[1# are such that "t−r#Ł E"t−r#\ for 9 ³ r ³ t[
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Fig[ 1[ Evolution of the stress under constant strain velocity] "a# yielding stress threshold as a function of the strain
velocity^ "b# non!dimensional stress as a function of the strain velocity[ "K � 04H�\ K� � 4H�\ Nye � 1H�\ a � 1b\
b � 09−2 day−0#[

3[ Viscoelastic evolution

Starting from t � 9\ we recall that if the _rst inequality of "2[09#0 is veri_ed for both springs\
their behavior is linear and viscoelastic[ Substituting the expression "2[2# of the relaxation function
into the BoltzmannÐVolterra eqn "2[1# and using the compatibility eqns "1[0#\ "1[1#\ the expressions
of the normal stresses in the springs are]
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N0"t# � K $u"t#−
B
1

f"t#%−Ca g
t

9

e−"t−r#a $u"r#−
B
1

f"r#% dr\ "3[0#

N1"t# � K $u"t#¦
B
1

f"t#%−Ca g
t

9

e−"t−r#a $u"r#¦
B
1

f"r#% dr\ "3[1#

after setting Ca M aKÞ[
The equilibrium equations in terms of the unknown functions tŁ f"t#\ tŁ u"t# can be obtained

by substitution of "3[0#\ "3[1# into eqn "1[3#\ i[e[

1Ku"t#−1Ca g
t

9

e−"t−r#au"r# dr � W

ðKJ−WhGŁf"t#−CaJ g
t

9

e−"t−r#af"r# dr � WhGf9 "3[2#

where J M B1:1[ After straightforward calculations the solution of the system can be determined
in the form]

u"t# �
W

1K� 00−
KÞ
K

e−taK�:K1\ "3[3#

f"t# �
WhGf9

K�J−WhG 60−
"K−K�#J
KJ−WhG

e−ta
K�J−WhG

KJ−WhG 7[ "3[4#

Until S�1"t# ³ 9\ the evolution of the system is completely determined by eqns "3[3#\ "3[4#\ and in
particular\ if K�J−WhG × 9\ the exponent on the right!hand side of "3[4# is strictly negative\ so
that the limit of f when t : ¦� becomes

f"¦�# �
WhGf9

K�J−WhG

[ "3[5#

This means that the upper bound WÞ of the external action introduced in "III# must verify the
inequality

WÞ ³ WÞ �
ve \ "3[6#

where we set]

WÞ �
ve M

K�J
hG

[ "3[7#

By comparison between the expression "1[7# of the ultimate equilibrium rotation with "3[4# it is
possible to check whether or not the system reaches the failure condition in a _nite time tcr in the
viscoelastic phase[ Introducing the non!dimensional ratios]
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v M
W

WÞ �
ve

\ r M
K�

K
\ "3[8#

the limit condition arises if the following equation has a solution

e−tcra
0−v

r−v �
r−v

r−0 $
f9

fL

−v−0 0
f9

fL

−01%[ "3[09#

Thus\ the su.cient condition to ensure that no failure occurs in the viscoelastic phase\ is that the
right!hand side must be strictly greater than one[ After straightforward calculations this condition
can be written as follows

v1−v $0¦
0
r 00−

f9

fL1%¦
0
r 00−

f9

fL1× 9[ "3[00#

Since v0 � 0\ and v1 �"0:r#ð0−"f9:fL#Ł are the roots of the polynomial\ the assumptions "II#\
"IV# ensures that v0 ³ v1\ and inequality "3[00# is certainly veri_ed if the external load is such
that W ³ WÞ �

ve [ By "3[4#\ the value of the additional rotation at the beginning of the viscoelastic
evolution can be determined

f"9# �
WhGf9

KJ−WhG

\ "3[01#

which is positive and _nite once W ³ WÞ 9
E\ having introduced the Euler|s critical load for the

system]

WÞ 9
E M

KJ
hG

[ "3[02#

By assumption "V#\ W ³ WÞ 9
E is veri_ed once W ³ WÞ �

ve [
So\ the value WÞ �

ve may be taken as the minimum upper bound for the external load which ensures
not only the uniqueness of the solution\ but also that no failure occurs during the evolution of the
system in the viscoelastic phase[ However\ this circumstance allows the possibility of yielding\
which will be discussed in the next section[

For the sake of completeness\ the values of the vertical displacement for t � 9\ and for t : ¦�\
are computed]

u"9# �
W
1K

\ u"¦�# �
W

1K�

[ "3[03#

4[ Viscoplastic evolution

The evolution of the system changes when the yielding occurs in one of the springs[ Until N0

and N1 are under the yielding threshold\ expression "3[2# holds\ so that f is monotonic increasing
and\ by eqns "1[4#\ "1[5#\ we have that N1 × N0[ As it has already been noted in Section 2\ the
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yielding parameter ty is determined by the condition "2[02#[ For the particular problem under
examination\ we can replace N�"ty# with N1�"ty# in "2[02#\ which becomes

K� $u"ty#¦
B
1

f"ty#%� Nye\ "4[0#

having introduced the compatibility eqn "1[2#[ In consideration of the expressions "3[3# and "3[4#
for tŁ u"t#\ tŁ f"t#\ eqn "4[0# can be rewritten as follows]

0−"0−r# e−tyar¦
f9

fL"0−v# $0−
0−r

0−rv
e−tyar

0−v

0−rv%�
1vye

v
\ "4[1#

where v is de_ned by "3[8# and vye is its value when W � Nye[ Exact solution of this equation can
be obtained for f9 � 9\ i[e[ for the perfect system[ In this case expression "3[4# implies that tŁ f"t#
is identically zero\ and "1[6# is veri_ed as equality\ i[e[ N1y � N1"ty# �"W:1#^ the rate sensitivity
property "2[13#\ ensures that W:1 is greater than the equilibrium yielding stress[ In "4[1# only the
_rst term on the left!hand side is di}erent from zero\ and we get

ty � ln 8"0−r#
0

00−
1vye

v 19
0
ra

\ "4[2#

so that the argument of the logarithm is meaningful if and only if

0 ³
v

1vye

³
0
r

[ "4[3#

The _rst inequality is certainly veri_ed for the reason cited above\ and this leads to the following
de_nitions]

De_nition 0] W is an admissible value for the external load if yielding is allowable with non!zero
_nite deformation velocity\ i[e[\ the _rst of inequalities "4[3# is satis_ed^

De_nition 1] W is an attainable value for the external load if it is admissible and no ultimate
equilibrium condition is reached[

Further\ if any attainable load obeys the second inequality of "4[3#\ ty is non zero\ so that the
viscoelastic phase is meaningful\ and is passed within a _nite time before the yielding[ This fact
will be discussed in the next section[

When f9 is di}erent from zero\ the value of the yield stress N1"ty# can be obtained by expression
"A[5# by taking g � 0\ t � ty\ t0 � 9\ N � N1\ E � E1\ G as de_ned by "2[1#\ and E1 given by the
compatibility eqn "1[2#\ where the functions tŁ u"t#\ tŁ f"t# are given by "3[3# and "3[4#\ respec!
tively[ By setting]

u½ "t# � g
t

9

erau"r# dr �
W

1aK�

eta"0−e−tar#\ "4[4#
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f½ "t# � g
t

9

eraf"r# dr �
f9v

a"0−v#
eta 60−e−tar

0−v

0−rv7 \ "4[5#

the expression of N1y � N1"ty# becomes]

N1"ty# � K $u"ty#¦
B
1

f"ty#%−Ca e−tya $u½ "ty#¦
B
1

f½ "ty#%[ "4[6#

The substitution into eqn "4[6# of the expressions "3[3#\ "3[4#\ "4[4#\ "4[5# evaluated in ty\ yields\
after some calculation\ the following identity]

e−tyar
0−v

0−rv
�

0−rv

v"0−r# $0−
1N1"ty#−v

K�B
0−v

v % [ "4[7#

This expression is veri_ed only if the right!hand side is a real number belonging to the interval
ð9\ 0Ł and this circumstance occurs if the following inequalities are satis_ed]

W
1

¾
W
1 00¦

f9:fL

0−rv1¾ N1"ty# ¾
W
1 00¦

f9:fL

0−v 1¾ W\ "4[8#

and the _rst rough delimitation of N1"ty# given by "1[6# and "1[8#\ evaluated for t � ty is re_ned[ It
is straightforward to check that the di}erence between the upper bound and the lower bound of
N1"ty# is strictly positive for W ³ WÞ 9

E\ and\ for every _xed value of the ratio f9:fL in agreement
with "II#\ the bound di}erence increases as r decreases[ The inequality between the second and the
third member of "4[8# implies that the yield stress has to be su.ciently greater than W:1\ and
owing to "II#\ the latter inequality holds for every initial imperfection[ The inequality under
examination becomes]

f9

fL

³ 0−v\ "4[09#

which must be checked for W ³ WÞ a!posteriori\ once WÞ introduced by "III# has been computed[
To study the evolution after the yielding\ the values of the functions f and u for t � ty are requested\
and their explicit expressions can be evaluated starting from "3[4#\ "3[3#\ respectively[ When the
yielding condition of "2[09# is satis_ed\ and if unloading processes do not occur\ the present value
of the stress N1 may be determined by substitution of the expressions "2[05# for the relaxation
function into the BoltzmannÐVolterra equation^ in view of the compatibility eqn "1[2# we have]

N1"t# � K $u"t#¦
B
1

f"t#%−Cb g
t

9

e−"t−r#b $u"r#¦
B
1

f"r#% dr

¦e−"t−ty#a ðN1"ty#−KE1"ty#Ł¦L"t#\ "4[00#

after setting Cb � bHÞ and]

L"t# M ðHÞ "0−e−b"t−ty##−KÞ"0−e−a"t−ty##ŁK−0
� Nye[ "4[01#

On the other hand\ for the stress N0 the _rst of conditions "2[09# is veri_ed since N0"t# × 9^
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moreover\ if f9 � 9\ it is straightforward to use "1[4#\ "1[6# and "4[9#\ to show that N0"ty# ³ Nye[
So\ we can conclude that N0"ty# ³ N0y\ which implies S�0"ty# ³ 9[ The case f9 � 9 follows a di}erent
demonstration line and is discussed in Appendix B[

Following the same procedure used to compute N1\ but replacing eqn "1[2# with eqn "1[1#\ we
have]

N0"t# � K $u"t#−
B
1

f"t#%−Ca g
t

9

e−"t−r#a $u"r#−
B
1

f"r#% dr¦e−"t−ty#a ðN0"ty#−KE0"ty#Ł[

"4[02#

The substitution of expression "4[00# and "4[02#\ into equilibrium eqns "1[3# leads to the following
system]

1Ku"t#−g
t

ty

"Ca e−"t−r#a¦Cb e−"t−r#b#u"r# dr¦
B
1 g

t

ty

"Ca e−"t−r#a¦Cb e−"t−r#b#f"r# dr

� W"0¦l e−"t−ty#a#−L"t# "4[03#

B
1 g

t

ty

"Ca e−"t−r#a−Cb e−"t−r#b#u"r# dr−
J
1 g

t

ty

"Ca e−"t−r#a¦Cb e−"t−r#b#f"r# dr¦"KJ−WhG#f"t#

� Wf9"hG¦m e−"t−ty#a#−
B
1

L"t# "4[04#

after setting]

l M 1
Ca

W
e−tyau½ "ty#\ "4[05#

m M a
CaJ

Wf9hG

e−tyaf½ "ty#^ "4[06#

l and m can be computed by means of expression "4[4#\ "4[5#[ As it was expected\ coupling between
the two unknown functions occurs in the viscoplastic range\ and obviously this fact is due to the
variation of both the equilibrium moduli and exponents from the viscoelastic to the viscoplastic
phase[

Standard Laplace!transform technique can be applied to solve the system "4[03#\ "4[04#[ We
denote with sŁU
 "s# and sŁF
"s# the transformed functions]

U
 "s# � Lðu"t#Ł M g
¦�

9

e−s"t−ty#u"t# dt "4[07#

F
"s# � Lðf"t#Ł M g
¦�

9

e−s"t−ty#f"t# dt\ "4[08#

where the term esty is the shifter which takes into account that in "4[03#\ "4[04#\ tŁ u"t#\ tŁ f"t#
are de_ned for t × ty[ By taking the Laplace transform of both sides of "4[03#\ "4[04#\ we get
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$1K−0
Ca

s¦a
¦

Cb

s¦b1%U
 "s#¦
B
1 0

Ca

s¦a
¦

Cb

s¦b1F
"s# � W 0
0
s
¦

l

s¦a1−L
"s#\ "4[19#

B
1 0

Ca

s¦a
¦

Cb

s¦b1U
 "s#¦6$1K−0
Ca

s¦a
¦

Cb

s¦b1%
J
1

−WhG7F
"s#

� Wf9hG 0
0
s
¦

m

s¦a1−
B
1

L
"s# "4[10#

where]

L
"s# M g
¦�

9

e−s"t−ty#L"t# dt � 0
K�−H�

s
¦

KÞ
s¦a

−
HÞ

s¦b1K−0
� Nye[ "4[11#

The solution of the system can be obtained in terms of the transformed variable s]

U
 "s# �
U9¦U0s¦U1s

1¦U2s
2

s"s¦a#1"s¦b#D"s#
\ "4[12#

F
"s# �
F9¦F0s¦F1s

1¦F2s
2

s"s¦a#1"s¦b#D"s#
"4[13#

where D"s# is the polynomial expression of the determinant for the linear system "4[19#Ð"4[10#[
The explicit expressions of tŁ u"t#\ tŁ f"t# are developed in Appendix C\ by inversion of sŁU
 "s#
and sŁF
"s#[ The function L\ which appears in de_nition "2[00#\ can be deduced by di}erentiation
of "4[00# and "4[01# with respect to the time\ to get ]

L"Sy\ Dy\ t# �
b−a

a
e−a"t−ty# Ga"Sy\ Dy#¦Lþ"t#Dy[ "4[14#

5[ Asymptotic behavior and conditions for attainability

In view of the _nal value theorem "Widder\ 0830#\ the asymptotic behavior of tŁ u"t#\ tŁ f"t#
can be studied directly by looking at the transformed functions[ This allows to work out the
expressions for both u"¦�# and f"¦�# as follows]

u"¦�# � lim
s:9

sU
 "s# � W

"K�¦H�#
J
1

−WhG¦0f9hG

B
1

−
1Nye

W
J1"K�−H�#

"K�¦H�# 0
1K�H�

K�¦H�

J−WhG1
\ "5[0#
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f"¦�# � lim
s:9

sF
"s# � W

f9hG"K�¦H�#¦
B
1 00−

1Nye

W 1"K�−H�#

"K�¦H�# 0
1K�H�

K�¦H�

J−WhG1
[ "5[1#

The fact that f"¦�# is positive even for f9 : 9¦ can be explained noting that\ although the
yielding is reached at the same time in both the springs\ at t � ty the evolution starts with di}erent
conditions in the two sides\ because for one spring unloading inevitably occurs[ Indeed\ recalling
relations "4[0# and "2[7#\ it follows that S�0"ty# � S�1"ty# � 9^ moreover\ the di}erentiation of eqns
"1[4# and "1[5#\ under the hypothesis that W is constant\ leads to Sþ0"ty# ³ 9 and Sþ1"ty# × 9^ so\
"2[09#0 and "2[09#1 are veri_ed for the viscoelastic and viscoplastic parts\ respectively[ This explains
why to consider f9 : 9¦ is not equivalent to take a perfect system from the beginning of the
evolution[ As cited previously\ the analysis of the perfect system is carried out in detail in Appendix
B[

Furthermore\ examining "5[0# and "5[1# it appears that u"¦�# and f"¦�# assume _nite values
only if the external load W obeys the following inequality]

W ³ WÞ �
VK\ "5[2#

where]

WÞ �
VK M

1K�H�

K�¦H�

J
hG

^ "5[3#

this value is exactly the Von Ka�rma�n critical load associated to the reduced modulus at in_nity[
By assumptions "IV#\ "V#\ "VI# is trivial to show that WÞ �

VK ³ WÞ �
ve ^ so\ by taking into account

inequality "3[6#\ we conclude that the greater external load for which there exists a unique
equilibrated con_guration for the system is exactly the Von Ka�rma�n critical load[ As we pointed
out previously\ this result strongly depends on the circumstance that a constant force drives the
system evolution[

It remains to investigate the conditions under which the ultimate equilibrium condition is
reached\ either asymptotically or in a _nite time[ The _rst case can be easily discussed by taking
the expressions "1[7# and "5[1# for fu and f"¦�#\ respectively[ It turns out that f"¦�# ³ fu

only if the external load satis_es the following inequality]

W ³ WÞ �
U "f9# "5[4#

for any f9 × 9 obeying "4[09#\ where]

WÞ �
U "f9# M WÞ �

SH 00−
f9

fL1¦Nye 00−
H�

K�1^ "5[5#

in "5[5# we indicated the Shanley critical load associated to the equilibrium tangent modulus as]
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WÞ �
SH �

H�J
hG

[ "5[6#

It is worth noting that because for f9 : 9¦ we have

WÞ �
U "9¦# � WÞ �

SH¦Nye 00−
H�

K�1\ "5[7#

the same arguments used to explain the positiveness of f"¦�# justify by themselves the fact that
the Shanley critical load is not reached when f9 : 9¦[

Moreover\ the comparison between WÞ �
U "f9# and WÞ �

VK tells us that the inequality]

WÞ �
U "f9# ³ WÞ �

VK\ "5[8#

holds for any f9 × 9 obeying "II#\ only if

WÞ �
VK = 00¦

f9

fL

K�¦H�

K�−H�1× 1Nye^ "5[09#

this inequality is certainly veri_ed by WÞ �
VK is admissible[ So\ collecting "1[8#\ "3[6#\ "5[3# and "5[4#\

we can conclude that if the external load obeys to the inequalities

WÞ �
ve × WÞ �

VK × WÞ �
U "f9# × W × 1Nye "5[00#

uniqueness of the solution of the equilibrium problem is ensured\ no failure occurs in the viscoelastic
phase and no asymptotic ultimate equilibrium condition arises[

The monotonicity of tŁ f"t# implies that "5[00# is also a su.cient condition for the non!
existence of a _nite critical time during the system evolution in the viscoelastic range] so\ a su.cient
condition for W to be attainable according to "de_nition 1# has been determined[

It is noticeable that the condition imposed by "5[00# is meaningful only if WÞ �
U "f9# is admissible\

and a su.cient condition ensuring this property for any positive value of f9 obeying "II# is that]

WÞ �
SH × Nye 00¦

H�

K�1[ "5[01#

Since constitutive assumption "IV# holds true\ the latter inequality does not guarantee the admissi!
bility of WÞ �

SH\ and this is in agreement with what we already remarked about the fact that the
imperfection amplitude evolves under constant load[

Further\ by eqns "5[5# and "5[7# it is possible to prove that W�
U "f9# × W�

SH\ for every value of
f9 × 9 obeying "II#[ In fact we need only to prove that]

f9

fL

³
Nye

WÞ �
SH 00−

H�

K�1³
K�−H�

K�¦H�

³ 0\ "5[02#

and this can be easily obtained by virtue of "5[01#\ assumption "IV#\ and inequality "5[09#[ The
analysis carried out before leads to the conclusion that the minimum upper bound of the load
introduced in "III# is given by WÞ �

U "f9#[
At the beginning of this section\ relations "4[3# were proved to hold for the perfect system[ For
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sake of completeness\ choosing W � WÞ �
U "f9# we verify whether the right inequality holds when

any positive f9 obeying to "II# is present[ We have]

WÞ �
U "f9# ³ 1Nyer\ "5[03#

which takes the form]

0−
f9

fL

³ 1vye

0
H� 0K−

K�−H�

1 1 "5[04#

Taking into account "5[01# and noting that a su.cient condition for this inequality to hold can be
determined for f9 : 9¦\ we get]

H�

1K−K�¦H�

³ vye ³
H�

K�¦H�

[ "5[05#

It is worth noting that the left!hand side is strictly less than 0:1 and its denominator is positive by
virtue of "VI#[ The range determined for vye ensures that no instantaneous yielding can arise
because ty � 9[

So far\ we pointed out that by the fourth inequality of "4[8#\ the upper bound of the yielding
value N1"ty# is meaningful only if "4[09# is satis_ed for every attainable load[ This condition must
be veri_ed when W equals WÞ �

U "f9# for any value of f9 × 9 obeying "II#[ The substitution of
expression "5[5# in "4[09# after some easy calculations leads to the following inequality]

f9

fL

³ 0−vye[ "5[06#

The substitution in this relation of the upper bound of rye determined by the right!hand side of
inequality "5[5#\ yields

f9

fL

³
K�

K�¦H�

\ "5[07#

which is certainly veri_ed if "II# holds[

6[ Concluding remarks

As it was noted in Shanley "0836#\ for the classical elasticÐplastic case bifurcation phenomena
can arise once the external load reaches one of three di}erent values\ depending whether the sway
of the system occurs when the yield threshold has been reached in none\ one or both the springs[
Moreover\ the loss of uniqueness appears for any value of the load parameter greater than the
Shanley|s critical load and smaller than the Euler|s critical one\ being the Von Ka�rma�n|s value in
between[ Only if the rotation of the system does evolve forced by an increasing external load\ with
magnitude large enough to have positive increment of both the spring normal stresses\ the bifur!
cation of the equilibrium takes place at the Shanley|s critical load[ However\ in the viscoplastic
case this is no longer true[
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In agreement with the Von Ka�rma�n|s statement\ inequality "5[3# leads to the _rst result\ i[e[
bifurcated con_gurations can occur under constant load once the external force equals WÞ �

VK[
On the other hand\ if W ³ WÞ �

U "f9# ³ WÞ �
VK the exclusion of asymptotic failure is also su.cient

to say that bifurcation phenomena do not arise\ and this is veri_ed once WÞ �
VK is admissible[ The

chain of inequalities "5[02# proves that if WÞ �
U "f9# is admissible as well\ it is also the minimum

value among all the loading parameters characterizing the phases of the system evolution\ i[e[
WÞ � WÞ �

U "f9# and every load which veri_es "III# is attainable[
A su.cient condition for the admissibility of WÞ �

U "f9# is that the Von Ka�rma�n|s critical load
WÞ �

VK be admissible itself\ and this is true if the Shanley|s load WÞ �
SH is large enough according to

"5[01#[ This condition is certainly veri_ed if also WÞ �
SH is admissible\ which is false if the system has

an initial imperfection[ Only if f9 � 9 the Shanley|s load turns out to be admissible\ even when a
constant external load drives the evolution "see Appendix B#[

Nonetheless\ the Shanley critical load summed up with the above!mentioned positive term plays
a key role on the characterization of the imperfect system equilibrium in the viscoplastic phase[
The obtained results do depend only on the moduli and yielding stress at equilibrium\ so that any
expression for the relaxation surface consistent with the constitutive assumptions and such that it
converges to "2[01# under extreme retardation\ leads to the same conclusion[

Appendix A] Time rescaling of the process

In order to obtain a rescaled process\ we _x an interval ðt0\ t1Ł and we take a real g × 9 to
construct the map tg de_ned as follows]

tg M 8
t¦"0−g#"t1−t0# for t ³ t0
gt¦"0−g#t1 for t0 ¾ t ³ t1
t for t − t1

[ "A[0#

The function tg maps ðt0\ t1Ł into the interval ðt1−g"t1−t0#\ t1Ł and it acts on ðt0\ t1Ł either with a
uniform contraction if g ³ 0\ or with a uniform dilatation if g × 0[ Further\ we say either that the
following function]

Dg"tg"t## M D"t#\ "A[1#

is the g!acceleration of D in ðt0\ t1Ł if g ³ 0\ or the g!retardation if g × 0[ For t − t1 and for all
positive g we have]

Dg"t# � D"t#\ "A[2#

and for t ³ t1\

D"t# M 6
D"t−"0−g#"t1−t0## for t ³ t1−g"t1−t0#

D"t1−g−0"t1−t0## for t − t1−g"t1−t0#
[ "A[3#

The decreasing monotonicity of the relaxation function G ensures that the same property holds
for the function]
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gŁ Sg"t# M K = Dg"t#¦g
t

−�

Gþ"t−r# = Dg"r# dr\ "A[4#

obtained by "2[0# replacing S and D with Sg\ Dg[ By inserting into "A[4# the expression "A[3# and
"2[1#\ a useful form of the latter equation can be deduced after integration by parts]

Sg"t# � K�D"t#¦KÞ g
t

t0

e−ga"t−r# dD"r#¦KÞ e−ga"t−t0# 0−D"t0#¦g
t0

−�

e−ga"t0−r# dD"r#1[ "A[5#

If we consider two di}erent values g0 ³ g1\ eqn "2[06# and the monotonicity of G lead to the
inequality]

Sg0"t# × Sg1"t#[ "A[6#

In view of "A[3# and by substituting eqn "A[5# into "2[3#\ the value of the relaxation surface Ga at
"Sg"t#\ Dg"t## takes the form]

Ga"Sg"t#\ Dg"t## � −aKÞ $g
t

t0

e−ga"t−r# dD"r#¦e−ga"t−t0# 0−D"t0#¦g
t0

−�

e−ga"t0−r# dD"r#1%[
"A[7#

If tp denotes the _rst instant in which the loading condition of "2[09# is veri_ed\ and if no unloading
occur in the interval ðtp\ tŁ\ t × tp _xed\ by taking t0 � tp the relaxation surface is given by eqn
"2[00#\ and its value in "Sg"t#\ Dg"t## is]

Gb"Sg"t#\Dg"t## �−bHÞ $g
t

tp

e−gb"t−r# dD"r#¦HÞ−0KÞ e−ga"t−tp# 0−D"tp#¦g
tp

−�

e−ga"tp−r# dD"r#1%
−

b−a

a
e−ag"t−tp# Ga"S"tp#\ D"tp##\−Lþ"gt# = D"tp# "A[8#

The functions gŁGa"Sg"t#\ Dg"t## and gŁGb"Sg"t#\ Dg"t## are strictly monotonic decreasing\ and
converge to the null value in the limit for g : ¦�[

Appendix B] Viscoplastic bifurcation of the perfect system

As we already noted at the beginning of Section 4\ if f9 � 9 the function tŁ f"t# is identically
zero in both the elastic and the viscoelastic phases and N0y � N1y �"W:1# leading so\ by de_nition
"2[7#\ to S�0"ty# � S�1"ty# � 9[ Since the load is constant\ by di}erentiation of eqns "1[4#\ "1[5#\ we
have Sþ0"ty# � Sþ1"ty# � 9 so that "2[09#1 is veri_ed[ So\ N1 is given by "4[00# and N0 takes the
following form]

N0"t# � K $u"t#−
B
1

f"t#%−Cb g
t

ty

e−"t−r#b $u"r#−
B
1

f"r#% dr

¦e−"t−ty#a"N0"ty#−KE0"ty##¦L"t# "B[0#
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Since E0"ty# � E1"ty# � u"ty# the third term is equal for both the expressions of N0 and N1\ so that
the equilibrium eqns "1[3# become]

Ku"t#−Cbg
t

ty

e−"t−r#bu"r# dr � ðK¦KÞ"0−e−"t−ty#a#−HÞ "0−e−"t−ty#b#ŁK−0
� Nye\ "B[1#

"KJ−WhG#f"t#¦J g
t

t

Cbe−"t−r#bf"r# dr � 9[ "B[2#

The _rst equation leads directly to the expression of u"t#]

u"t# � ðK� e−"t−ty#b¦"KÞ¦H�#"0−e−"t−ty#b#ŁK−1
� Nye¦

"a−b#KÞ
bK�−aK

e−"t−ty#a\ "B[3#

while the second one is an eigenvalue problem[ It is worth noting that if "VI# holds u"¦�# × u"ty#\
and this is in agreement with the result of "B[3#\ namely u"¦�# �"H�¦KÞ#K−1

� Nye[
Following the time rescaling procedure introduced in Appendix A\ either by taking the g!

acceleration or the g!retardation of f in "ty\ tŁ\ and integrating by parts\ "B[2# becomes]

"H�J−WhG#f"t#¦HÞJ g
t

t

Cb e−g"t−r#bf"r# dr¦HÞJ e−g"t−ty#bf"ty# � 9[ "B[4#

The extreme acceleration and the extreme retardation of f yield the following expressions]

"KJ−WhG#f"t# � 9\ "H�J−WhG#f"t# � 9\ "B[5#

whose solution are the bifurcation load parameters WÞ 9
E\ WÞ �

SH\ although the _rst one is excluded by
inequality "3[6#[ It follows that\ if the system is perfect at the beginning of its evolution\ and no
small disturbances arise neither in the viscoelastic phase nor in the viscoplastic phase\ the Shanley|s
critical load is admissible and bifurcation may occur for W � WÞ �

SH[
The same result can be obtained directly by solving eqn "B[2#\ which admits the eigensolution]

f"t# � A e−"t−ty#b
H�J−WhG

KJ−WhG \ "B[6#

where A is an arbitrary constant^ indeed\ we realize that this function can be of bounded variation
on "ty\ ¦�#\ only if W ¾ WÞ �

SH\ proving the thesis[

Appendix C] Inversion of sŁU
 "s# and sŁF
"s#

Here we consider the determinant of the system of equations "4[19# and "4[10#]

D"s# �
D9¦D0s¦D1s

1

"s¦a#"s¦b#
\ "C[0#

where
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D9 M ab"K�¦H�# 0
1K�H�

K�¦H�

J−WhG1\ "C[1#

D0 M 1K"a¦b# 0
aK�¦bH�

a¦b
J−WhG1\ "C[2#

D1 M 1K"KJ−WhG#[ "C[3#

The solution of the system can be written as]

U
 "s# �
U9¦U0s¦U1s

1¦U2s
2

s"s¦a#1"s¦b#D"s#
\ "C[4#

where]

U9 � a1b $"K�¦H�#
J
1

−WhG¦"K�−H�# 0f9hG

B
1

−
1Nye

W
J1%\ "C[5#

U0 � aðb"1¦l#¦aŁ"KJ−WhG#¦"K�−H�# 0f9hG

B
1

b"0¦m#−
1Nye

W
J

K�¦H�

K� 1
¦f9hG

B
1
"aK−bH# "C[6#

U1 � a"KJ−WhG#−"aKÞ−bHÞ# 0f9hG

B
1
"0¦m#−

1Nye

W
J

K�¦H�

K� 1
¦"0¦l# $

J
1
"aK�¦bH�#−WhG"a¦b#% "C[7#

U2 �"0¦l#"KJ−WhG#[ "C[8#

In the same manner]

F
"s# �
F9¦F0s¦F1s

1¦F2s
2

s"s¦a#1"s¦b#D"s#
"C[09#

where]

F9 � a1b $"K�¦H�#f9hG¦"K�−H�# 00−
1Nye

W 1
B
1%\ "C[00#

F0 � af9hG ð1K"a¦b#−"aKÞ¦bHÞ#−b"0¦m#"K�−H�#Ł

−a
B
1 $"aKÞ−bHÞ#−b"K�−H�# 00¦l−

1Nye

W
K�¦H�

K� 1%\ "C[01#
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F1 � f9hG"1Ka¦"0¦m#ða"K¦K�#¦b"K¦H�#Ł#

−
B
1
"aKÞ−bHÞ# 00¦l−

1Nye

W
KÞ

K�1 "C[02#

F2 � 1K"0¦m#f9hG[ "C[03#

The functions "C[4# and "C[09# give the solution of the evolution problem in terms of the trans!
formed variable s^ in order to perform an inverse Laplace transform\ the algebraic form of the
function must be resolved in a sum of factored terms[

Examining the case of the rotation "but the same holds for the displacement too#\ by substitution
of "C[0# in "C[09# we have]

F
"s# �
W
a

F9¦F0s¦F1s
1¦F2s

2

"a¦s# ="s−s0# ="s−s1#
\ "C[04#

where we indicated with s0 and s1 the two real solutions of the equation]

D9¦D0s¦D1s
1 � 9[ "C[05#

In order to perform analytically the inverse transform we are seeking for a form of the type]

F
"s# �
W
a $

A
s

¦
B

s¦a
¦

C
s−s0

¦
D

s−s1%[ "C[06#

The unknown coe.cients A to D are to be determined imposing the condition that the di}erence
"C[04#Ð"C[06# must vanish for all possible s values[ Expanding the di}erence and solving the linear
system in the four unknown coe.cients we have _nally]

A �
F9

as0s1

\ B �
F9¦F0a−F1a

1¦F2a
2

a ="a¦s0# ="a¦s1#
\ "C[07a#

C �
F9¦F0s0¦F1s

1
0¦F2s

2
0

s0 ="a¦s0# ="s0−s1#
\ D �

F9¦F0s1¦F1s
1
1¦F2s

2
1

s1 ="a¦s1# ="s1−s0#
[ "C[07b#

Thus\ transforming back\ the time evolution of the rotation can be expressed as a function of the
time variable and the four coe.cients reported above^ we have]

L−0 ðestyF
"s#Ł � W"A¦B e−at¦C es0t¦D es1t# � f"t#\ "C[08#

where]

t � t−ty[ "C[19#
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