Assistant Professor of Solid and Structural Mechanics

Self-encapsulation, or the 'dripping' of an elastic rod

A rod covering a fixed span is loaded at the middle with a transverse force, such that with increasing load a progressive deflection occurs. After a certain initial deflection, a phenomenon is observed where two points of the rod come in contact with each other. This is defined as the 'dripping point' and is when 'self-encapsulation' of the elastic rod occurs. Dripping seems at a first glance to be impossible and definitely cannot occur in the presence of 'ordinary' constraints (such as simple supports or clamps) at the ends of the span. However, the elastica governs oscillating pendulums, buckling rods and pendant drops, so that a possibility for self-encapsulation might be imagined. This phenomenon is indeed demonstrated (both theoretically and experimentally) to occur when at least one of the constraints at the ends of the rod is a sliding sleeve. This mechanical device generates a configurational force, causing the dripping of the rod, in a fully elastic set-up.



If you're having trouble playing videos on YouTube, click here to watch it.



Related papers: