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SUMMARY

The relationship between residuals obtained from Autoregressive with Exogenous Input (ARX) predictors
is examined from the perspective of resolution in damage detection. It is shown that residuals from all
ARX structures are filtered versions of those obtained when only inputs are used to compute the
predictions, i.e. the output error (OE) residuals. Examination shows that the transfer matrix from the OE
residuals to the equation error (EE) ones has repeated poles at the origin and transmission zeros and zero
directions that coincide with the poles and eigenvectors of the input–output map. This result, together with
an examination of the spectral distribution of the OE residuals suggest that these are likely more
informative for damage detection than the EE ones. Results of a Monte Carlo study and tests on an
aluminum beam, where damage is simulated by the addition of a small mass, are shown to support this
contention. Copyright r 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper considers the residual approach to damage detection and examines, specifically, how
selection of output error (OE) or equation error (EE) residuals from Autoregressive with
Exogenous Inputs (ARX) models [1,2] affects resolution. We recall, for clarity, that the term EE
is used to indicate that the reference signals are obtained using inputs and measured outputs,
while OE indicates that only the reference model and the measured inputs are used. The result
that is central to the paper and which supports the discussions throughout is a derivation
showing that the EE residuals are the convolution of the OE ones with a kernel defined by the
coefficient matrices of the autoregressive part of the ARX model. More specifically, the
derivation shows that the poles of the reference model (whether these are physical or not)
are transmission zeros of the transfer matrix relating the OE to the EE residuals and that the
associated zero directions coincide with the eigenvectors.

Work explicitly focused on investigating the relation between OE and EE residuals from
ARX predictors is not known to the writers, but related research on data-driven fault detection
schemes is extensive. The classical approach, introduced by Mehra and Peschon [3], takes the
residuals as the innovations of a Kalman filter [4] and uses deviations from anticipated
whiteness to announce damage [3,5]. The innovation correlations scheme is particularly
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attractive when the statistics of the process and measurement noise are stable throughout the
monitoring period, but it is less so when this is not the case because the filter reacts to all changes
and it is necessary to distinguish between changes in the noise statistics from changes in the
system. Investigations that have used ARX residuals to detect damage include the one by
Peeters [6], the related works by Lu and Gao [7] and Gao and Lu [8] and the AR-ARX scheme
presented by Shon and Farrar [9].

On the identification of the ARX model parameters from the data there are many excellent
references; we note the classic texts by Ljung [1], Soderstrum and Stoica [2], and the more
recent one by Verhaegen and Verdult [10]. Albeit not based on the ARX structure, a residual-
based detector that has received much attention in the structural health monitoring community
uses differences from the product of two matrices that are orthogonal under the null hypo-
thesis (i.e. that the system is not damaged). One of the matrices is the left kernel of an
observability block identified from data of the reference state and the other is a Hankel
matrix of covariance functions from the interrogation phase. Details of this approach can be
found in [11–13]. General reviews on fault detection, including discussion of the residual
based strategy, can be found in Baseville [14], Willsky [15], Frank [16], Patton et al. [17]
and Fassois [18] among others. Finally, on the important issue of the effect of environ-
mental changes on damage detection, the reader is referred to the recent review given by
qSohn [19].

This paper begins with some observations on the extraction of the reference ARX model
from measurements and continues with the analytical examination of the connection between
the OE and EE residuals. Examination on how damage affects the spectrum of the OE residuals
and a brief discussion on the selection of a damage discriminating metric conclude the analytical
part of the paper. The numerical section contains a Monte Carlo study and results from an
experiment where damage in an aluminum beam is simulated by the addition of a small mass.
A concluding section with a review of the main points closes the paper.

2. THE REFERENCE MODEL

Two strategies can be used to account for the existence of process and measurement noise
when a model for the deterministic input–output relation is desired, namely: (1) the disturbances
and measurement noise can be accommodated by over-specifying the order of the deter-
ministic input–output or, (2) an explicit noise model can be included in the parameterization.
In the first case one obtains an estimate of the deterministic input–output by removing
modes that appear related to the noise [20]. In the numerical analyzes in this paper the ARX
models are obtained by fitting an Autoregressive Moving Average with Exogenous
input (ARMAX) [1,2] to the data and then removing the MA part. The general ARMAX
model is

Xna
j¼0

aj yðk � jÞ1
Xnb
j¼0

bjuðk � jÞ1
Xne

j¼0

gj eðk � jÞ ¼ 0 ð1Þ

where aj, bj and gj are coefficient matrices, na, nb and ne are the orders of the autoregressive
exogenous and moving average parts, y is the measured output vector, u is the deter-
ministic input vector and e is white noise. In the general ARMAX model the orders noted
are independent but in structural applications it is common to operate under the premise
that the analog input is of the form u(t)5 f0(t)u(k)1f1(t)u(k11), where t is at the origin of
each time step and f0(t) and f1(t) are time invariant functions [21]. For this condition it
has been shown that the three orders can be taken as equal [22] so one can write the ARX
model as

Xn

j¼0

aj yðk � jÞ1
Xn

j¼0

bjuðk � jÞ ¼ 0 ð2Þ
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3. RESIDUAL GENERATION

3.1. EE

Using Equation (2) to solve for y(k) as a function of past values (i.e. taking a0 5�I) one has

ŷM ðkÞ ¼
Xn

j¼1

aj yðk � jÞ1
Xn

j¼0

bjuðk � jÞ ð3Þ

where the hat notation indicates a computed quantity (as opposed to a measured one) and the
subscript M indicates that the estimate is affected by the output measurements. The EE residual
is, therefore,

eEEðkÞ ¼ yðkÞ � ŷM ðkÞ ¼ yðkÞ �
Xn

j¼1

aj yðk � jÞ �
Xn

j¼0

bjuðk � jÞ ð4Þ

or, more compactly

eEEðkÞ ¼ �
Xn

j¼0

aj yðk � jÞ �
Xn

j¼0

bjuðk � jÞ ð5Þ

3.2. OE

The OE residuals are the difference between the measurements and the predictions obtained
using only the input. The pure simulation prediction can be computed from the weighting
sequence description [23] (i.e. from convolution of the appropriate pulse response with the
input) or, more conveniently for our purpose, by replacing the measured output with the model
prediction in the ARX structure, namely

ŷOðkÞ ¼ �
Xn

j¼1

aj ŷOðk � jÞ �
Xn

j¼0

bjuðk � jÞ ð6Þ

where the subscript ‘O’ has been added to distinguish the result from that in Equation (3).
Subtracting the measurement at (k) from both sides of Equation (6) one gets

eOEðkÞ ¼ yðkÞ �
Xn

j¼1

aj ŷOðk � jÞ �
Xn

j¼0

bjuðk � jÞ ð7Þ

4. TIME DOMAIN RELATION BETWEEN OE AND EE RESIDUALS

Solving for the exogenous input term using Equation (7) and placing the result in Equation (5)
one gets

eEEðkÞ ¼ �
Xn

j¼0

ajyðk � jÞ1
Xn

j¼1

ajŷOðk � jÞ � yðkÞ1eOEðkÞ ð8Þ

Recalling that a0 5�I and that eOEðkÞ ¼ yðkÞ � ŷOðkÞ gives

eEEðkÞ ¼ �
Xn

j¼0

ajeOEðk � jÞ ð9Þ

which shows that the EE residuals are filtered versions of the OE ones, and that the kernel is the
AR part of the model.

5. FREQUENCY DOMAIN RELATION BETWEEN OE AND EE RESIDUALS

Further insight into the relationship between the residuals can be developed from an
examination in the z-domain. We recall for clarity that the z-transform on the unit circle, i.e.
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when z ¼ e�ioDt, is the same as a discrete time Fourier Transform and that as the (positive)
frequency goes from zero to Nyquist, z moves from 1 to �1 along the upper half of the unit
circle. To get the transfer matrix (T(z)) we take a z-transform of Equation (9) and get

eEEðzÞ ¼ T ðzÞeOEðzÞ ð10Þ

where it is evident that

T ðzÞ ¼ �
Xn

j¼0

aj

zj ð11Þ

or

T ðzÞ ¼ �
1

zn

Xn

j¼0

ajzn�j ð12Þ

Equation (12) shows that the OE to EE transfer matrix has n repeated poles at the origin and
n transmission zeros [24,25]. To illustrate the relation between transmission zeros and zero
directions and the properties of the identified system we take a z-transform of Equation (2) and,
solving for the output as a function of the input, get

yðzÞ ¼
Xn

j¼0

ajzn�j

" #�1 Xn

j¼0

bjz
n�j

" #
fuðzÞg ð13Þ

Comparison of the matrix that is inverted in Equation (13) with the summation in Equation
(12) shows that the two are identical so one concludes that the poles of the identified
input–output map coincide with the transmission zeros of the OE to EE residual transfer matrix.
Moreover, since y(z) becomes parallel to the null space of the inverted matrix as z approaches a
pole it follows that the eigenvectors of the identified input–output coincide with the transmission
zero directions.

5.1. The transfer function

In the single output case T(z) becomes a scalar function and (since the a’s in Equation (11) are
scalars) one can write

T ðzÞ ¼ �an

Yn

j¼1

1

z
�

1

�zj

� �
ð14Þ

or

T ðzÞ ¼ �an

Yn

j¼1

�zj � z
�zjz

� �
ð15Þ

where �zj is the jth identified pole. From Equation (12) one has

�znT ðzÞ ¼
Xn

j¼0

ajzn�j ð16Þ

and, since the polynomial on the right side of Equation (16) is monic, its independent term is
equal to the product of its roots (with a minus sign in this case because of the minus sign of a0),
so one has

an ¼ �
Yn

j¼1

�zj ð17Þ

Substituting Equation (17) into Equation (15) gives

T ðzÞ ¼
1

zn

Yn

j¼1

ð�zj � zÞ ð18Þ

which is the general expression of the transfer function between OE and EE residuals.
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5.1.1. Uniformly spaced poles. Insight into the qualitative behavior of the OE to EE transfer
function can be gained by looking at Equation (18) in the idealized case where n poles are
uniformly spaced on a radius ro1. Since we consider the poles to be at constant radial distance
and the magnitude of a pole in the z-domain is j�zj ¼ r ¼ e�oxDt it follows that we are considering
the case where damping is inversely proportional to frequency. The situation is illustrated
(for n5 4) in Figure 1. From inspection of this figure and considerations of symmetry it is
evident that the product on the rhs of Equation (18) is the same in each of the segments of the
unit circle delimited by the intersection of radii passing through adjacent poles. In this simple
case it is possible to derive a closed form expression for T(z) as follows:

Lemma
Given z5 eiy and �zj ¼ re2pki=n k ¼ 0; 1; 2; ::: n� 1, (where n is even) one has

Yn�1
j¼0

ð�zj � zÞ ¼ ðeyni � rnÞ ð19Þ

Proof
From Figure 1 it is evident that

Yn�1
j¼0

ð�zj � zÞ ¼
Yn�1
j¼0

re
2pj
n i � eyi

� �
ð20Þ

or

Yn�1
j¼0

ð�zj � zÞ ¼
Yn�1
j¼0

e
2pj
n i r � e y�2pj

nð Þi
� �

ð21Þ

The product outside the parenthesis on the rhs equals minus one so one has

Yn�1
j¼0

ð�zj � zÞ ¼ �
Yn�1
j¼0

r � e y�2pj
nð Þi

� �
ð22Þ

The second term on the rhs parenthesis are the n roots of �eyni so it follows (recalling that the
product of the roots of a monic polynomial is equal to the independent term) that the rhs in
Equation (22) is the factorization of the monic polynomial rn�eyni. &

From the previous lemma and Equations (18) and (19) one finds that the OE to EE transfer
function for the case of uniformly spaced poles is

T ðzÞ ¼
ðenyi � rnÞ

enyi
ð23Þ

Inspection of Equation (23) shows that the amplitude of T(z) fluctuates between 1�rn to 11rn

and the phase between f ¼ � tan�1 ðrnÞ. For sufficiently large n, therefore, the transfer

unit circle

z = eiθ

a

a
a

a

a

1
r

Figure 1. Geometric interpretation of the numerator of Equation (18).
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resembles an all-pass filter. For small n values, however, the situation typically encountered in
practice, T(z) displays attenuation at the poles and amplification at the midpoint between poles.
A Bode plot of T(z) for 5% damping at a sampling to modal frequency of 20 is plotted in
Figure 2 for n5 8. As can be seen, the attenuation at the poles in this case is 0.118 and the
amplification between poles5 1.882. Although the result of Equation (23) is exact only in the
case of uniformly spaced poles, the fact that T(z) tends to attenuate the frequency components
in the vicinity of the natural frequencies of the (reference and the damaged) system holds in
general.

5.1.2. Effect of the sampling frequency on the OE to EE transfer function. The sampling
frequency determines the position of the system poles on the unit circle and, as a consequence,
has an important effect on T(z). Specifically, for fast sampling the poles appear in the vicinity of
z5 1 and, as one can see from Equation (18), the magnitude of T(z) becomes large as z
approaches the Nyquist limit. Indeed, in the limiting case all the terms in the numerator of
Equation (18) equal 2 and the magnitude of T(z) at Nyquist reaches 2n. Explicitly stated, for fast
sampling one anticipates that the EE residuals will have large high frequency noise because any
noise contained in the OE residuals will be highly amplified. Consider, for example, a 4-DOF
chain system with lumped masses equal to {1 2 1 3 } and stiffness values equal to 100 in some
consistent set of units. Figure 3 plots, for the case of 2% damping in each mode, and a
measurement at the 4th DOF, the magnitude of the transfer function from the OE to the EE
residuals for two different sampling: Dt5 0.15 and 0.01 s. The large time step is such that the
Nyquist frequency is close to the highest frequency mode and the fast represents, therefore,
oversampling by a factor of nearly 15. As can be seen, |T(z)| reaches very large values in the fast
sampling case. The fact that the residuals when sampling is fast are dominated by the
amplification of the high frequency noise is illustrated in Figure 4, which shows the OE and EE
residuals when damage is modeled as 10% loss of stiffness in the first spring and the
measurement is contaminated with additive noise having a standard deviation equal to 5% of
the measurement.

6. DAMAGE RELATED CONTRIBUTIONS TO THE OE RESIDUALS

The filtering that takes place in passing from the OE to the EE residuals proves beneficial or
detrimental for damage detection depending on how the damage contributions to the OE
residuals are distributed in frequency. One can gain some insight into the damage-related OE
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Figure 2. Transfer function between OE and EE residuals for a system or order eight with uniformly
spaced poles located in the unit circle at a radius r5 0.984.
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residual distribution as follows: using the superscript u to refer to the undamaged, or reference
state, and the superscript d for the potentially damaged (or interrogation) stage one has, with Y
as the discrete time Markov parameters [23]

ŷOEðkÞ ¼
Xk

j¼1

Y uðk � jÞuðjÞ ð24Þ

yd ðkÞ ¼
Xk

j¼1

Y d ðk � jÞðuðjÞ1oðjÞÞ1vðkÞ ð25Þ

where o and v are the unmeasured disturbances and the measurement noise. Recognizing that

ŷOEðkÞ1eOEðkÞ ¼ ydðkÞ ð26Þ

one gets, after some simple algebra

eOEðkÞ ¼ vðkÞ1
Xk

j¼1

Y d ðk � jÞoðjÞ1
Xk

j¼1

DY ðk � jÞuðjÞ ð27Þ
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Figure 3. Amplitude of transfer function between OE and EE residuals for two sampling rates:
(a) Dt5 0.15 s and (b) Dt5 0.01 s; the system is the 4-DOF system described in the text and the measure-

ment is at the 4th DOF.
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Figure 4. Time history of residuals for the 4-DOF described in text when damage is simulated as 10% loss
of stiffness on spring ]1; dark is EE and white is OE (units of e are fractions of g).
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which shows that the OE residuals are the sum of three contributions. The first term is
(assumed) white, the second is narrow band with peaks at the damaged state frequencies, and
the third is the difference of the response in the damaged and the undamaged states to the
deterministic input. This last term is narrow band and has peaks at the frequencies of
the undamaged and of the damaged state. To verify the previous arguments we compute the
amplitude of the Fourier spectrum of the OE residuals for the 4-DOF system considered in the
previous example but increase the damage to 40% to make the separation of the frequencies
between the undamaged and damaged state readily appreciated. The result depicted in Figure 5
is the average of 20 simulations with different realizations of the excitation and the noise. The
fact that the spectrum of the OE residuals has peaks at the undamaged and damaged poles is
evident from the figure. We note that the change in the frequency of the 4th mode is too small to
be seen in the scale shown.

6.1. Anticipated effect of the OE to EE filtering on damage detection effectiveness

Accepting that the model order is likely small (say less than 10 or so) and that significant
oversampling is typical in practice, it can be stated that the dominant features of the OE to EE
transfer are: (1) attenuation around the reference system poles and (2) amplification of the high
frequency OE residuals. Since the damage-related contributions to the OE residuals concentrate
in the region where the transfer function has a strong attenuation, one anticipates that the OE
residuals will prove more informative for damage detection than the EE ones.

7. POWER OF DETECTION

To contrast the damage detection resolution of OE and EE residuals it is necessary to select a
metric from the residual and to adopt a discriminating criterion. For the metric we use the ratio
of the variance of the residual to the variance of the channel measurement, which in terms of
signal norms can be expressed as

w ¼
kek
kymk

ð28Þ

where e is either eOE or eEE and the denominator is the measurement. Regarding the threshold
for announcing damage we take it such that the probability of a false positive (Type I error) is
no more than 5% and we judge relative performance in terms of the power of detection (POD),
defined as one minus the probability of a false negative, i.e. one minus the probability of making
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Figure 5. Spectrum of the OE residual at the 4th DOF for the 4-DOF system described in the text when the
system is damaged (40% loss of stiffness on spring ]1); the dotted lines are the location of the natural

frequencies of the system in the undamaged and damaged states.
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an error of Type II. In the multi-output situation, the metric is computed for each channel and
the decision logic is that if the result at any channel points to damage, then damage is
announced.

8. MONTE CARLO STUDY

The system considered is depicted in Figure 6. Two sensor arrangements, seven damage
distributions and three damage severities are examined. Only the single output case is
considered. The sensor distributions are S15 sensor in mass ]3 and S25 sensor in mass ]5. The
damage distributions are loss of stiffness in each one of the seven bars (one at a time) and
damage severities are 2.5, 5, and 10% loss of stiffness. Two hundred simulations are carried out
for each one of the 42 combinations considered. In each simulation the process noise is taken to
be independent random signals acting on all masses with an RMS that, for each signal, is
between 2 and 5% of the RMS of the deterministic excitation. The deterministic excitation in all
cases is a wide band signal acting on mass ]1. The measurement noise in each simulation has an
RMS of 5% of the measured signal and damping is 2% in all modes.

The results are summarized in Figure 7. As anticipated by the analytical examination, the
resolution of the OE residuals proves superior in all cases to that of the EE ones. In this case the
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k3

m3
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m4
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m5

Figure 6. System used in the numerical study m1�m55 0.05, k1 5 k3 5 k5 5 k7 5 100, k2 5 k4 5 k6 5 120
(consistent units), damping is stiffness proportional with constant 0.002; the system’s undamped natural

frequencies are {2.6,7.2,13.3,14.7 and 16.5} Hz.
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Figure 7. Power of detection at 5% type I error probability for the system of Figure 6; {a, b}, a5 location
of input, b5 location of output. Left column in the figure {1,3 },right column {5,5} damage extent: top row
in the figure 2.5%, middle row 5%, bottom row 10%; darker shade gives results from OE residuals and

lighter shade from EE residuals.
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differences are large. For example, at the 10% stiffness loss level, the OE residuals provide close
to 100% POD for all damaged patters while the EE residuals identify damage clearly only if it is
on spring ]1. Since our objective is to provide information on the contrast between the EE and
OE residuals we do not expand the discussion on the performance of the OE residuals but note,
however, that for the conditions considered here the OE residuals provide adequate damage
detection (except for bar ]3) at about 5% stiffness loss. The fact that damage in bar ]3 proves
difficult to identify is due to the fact that the equivalent pseudo-force provides little excitation in
the lower modes, making this damage nearly unobservable.

9. EXPERIMENTAL INVESTIGATION

To further validate the analytically observations we examined an aluminum beam where
damage was simulated by adding a small mass. The beam was tested in a free–free condition
realized by hanging it from very flexible surgical tubing. A picture of the test setup showing the
added mass in place and the suspension system is shown in Figure 8(a) with dimensions and
other relevant numerical data depicted in Figure 8(b). As can be seen, the beam is excited by an
electro-dynamic shaker and the response is recorded by five accelerometers located along the
centerline axis. The force delivered by the shaker and the acceleration at the point of the force
application were measured with an impedance head but acceleration at the shaker location
was not used in the analysis. Three tests were carried out: the first one to formulate the
reference ARX models, the second to compute the value of the metrics in and ‘undamaged’ case,
and the third, with the added mass, to evaluate the metrics in the ‘damaged condition’.
Since data to estimate the probability distribution of the metric in the healthy state is not
available, we do not attempt to estimate discriminating thresholds but simply report the metric
relative sensitivity.

10. RESULTS

The analysis was first carried out on the premise that only one accelerometer was available at
any given time. When formulating the model of the reference condition n5 4 (two pairs of
complex modes) proved appropriate. Identified frequencies and damping ratios are summarized
in Table I. As expected, the results from one sensor to the next are consistent, comparisons with
analytical expressions showing that the identified frequencies correspond to the first two flexural
modes. The values of the metric from Equation (28) are shown for all cases in Table II.
Consistent with theoretical expectations, the sensitivity to ‘the damage’, relative to the change

added mass (used to introduce a change in the system 
the reference

4@ 127

width=100 mm, thickness=6.35 mm
0.0567Kg

beam mass= 1.05 Kg

properties). In condition this mass is not present.

 mm

38 mm 48 mm

95 mm

shaker

accelerometers along the centerline 
of the beam (5 total)  

flexible tubing

Figure 8. Free–free aluminum beam used in experimental examination.
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between two undamaged cases, is much larger in the OE residuals than in the EE ones. Neither
metric is sensitive to ‘the damage’ when the model is based on the output from sensor ]3 and
analysis shows that this is due to the fact that this sensor is very near the node of the first mode.
For illustrative purposes Figure 9 depicts the amplitude of the residual transfer function for the
case of sensor ]5. Attenuation near the identified frequencies and amplification of the out-of-
band components is evident.

In a final examination we looked at all the channels simultaneously. The frequencies obtained
in this case are shown in the last row of Table I and, as one anticipates, are consistent with the
results obtained in the single output cases. The channel-by-channel ratio of the metric in the
damage and the healthy state for OE and EE are presented in Table III. As expected, the OE
residuals prove significantly more sensitive to the damage than the EE ones.

Table I. Identified frequencies and damping ratios in the formulation of the
reference ARX models.

Identification
Mode ]1 Mode ]2

from channel Freq (Hz) % damp Freq (Hz) % damp

1 90.92 0.46 251.58 0.12
2 90.90 0.51 251.58 0.12
3 90.97 0.44 251.17 0.12
4 90.89 0.51 251.55 0.12
5 91.19 0.58 251.48 0.11
1–5 90.94 0.45 251.56 0.12

Table II. Results of experiments on the free–free aluminum beam (single output).

Channel
Reference state Damaged state (added mass) Relative sensitivity

considered wOE wEE wOE wEE C3/C1 C4/C2

1 0.0196 0.2144 3.0746 0.1329 156.87 0.62
2 0.0336 0.3866 1.9386 0.5924 57.70 1.53
3 0.4805 5.1903 0.4939 5.9390 1.03 1.14
4 0.0274 0.3065 1.7294 0.5338 63.12 1.74
5 0.2607 2.6281 1.4420 4.2012 5.53 1.60
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Figure 9. Amplitude of the residual transfer function for the model identified for the aluminum beam when
the output sensor is ]5.
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11. CONCLUSIONS

Examination of the relationship between OE and EE residuals from ARX models shows that the
later are filtered versions of the former. In the typical situation of low-order identification
models, the basic features of the OE to EE filtering are attenuation of the contributions around
the poles of the reference system and amplification of the high frequency components due to
oversampling. Since most of the information on the OE residuals is concentrated in the vicinity
of the system poles (for the undamaged and damaged states), the filtering to EE residuals
typically has a detrimental effect in damage detection resolution. Results from simulations and
from an experimental test were found in agreement with this contention.
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