Microdamage Accumulation Changes According to Animal Mass: An Intraspecies Investigation

Stefano Z. M. Brianza · Patrizia D’Amelio · Nicola Pugno · Eric Zini · Andrea Zatelli · Fernanda Pluviano · Karine Cabiale · Marco Galloni · Giovanni Carlo Isaia

Abstract The fatigue life of a structure is also influenced by its size. Statistically, a bone from a large animal is expected to bear a higher risk of stress fracture if compared to the same bone from a small animal of the same species. This is not documented in the dog, where individuals can have a 40 times difference in body mass. We investigated the effect of body size on cortical bone microdamage accumulation, cortical microstructural organization (porosity, osteon area, and osteocyte lacunar density), and turnover in dogs with a wide body mass range. The aim was to understand and mathematically model how the bone tissue copes with the microdamage accumulation linked to body mass increase. Calcified transverse cortical sections of 18 canine radii of remarkably different size were examined by means of a standard bulk-staining technique and histomorphometric standard algorithms. Relationships between the investigated histomorphometric variables age, sex and mass were analyzed by general linear multivariate models and exponential equations. Type and location of microdamage and bone turnover were not influenced by body mass. Gender did not influence any parameter. Age influenced bone turnover and activation frequency. Microcrack density was influenced by bone mass. Bones had a similar microstructural organization within the same species regardless of the subject’s dimension. Microdamage accumulation is inversely related to bone mass, whereas bone turnover is mass-invariant. We theorize a mass-related change in the bone fracture toughness targeted to reach an optimal unique dimensionless curve for fatigue life.

Keywords Microdamage · Scaling · Size effect · Bone material property · Fatigue

Cyclic stresses produce an incremental failure process in the form of accumulation of matrix microdamage prior to bone collapse [1–4]. The effect of these repeated stresses in animal bones has been widely investigated, and fatigue fractures are a common consequence in animal athletes, especially thoroughbred horses [5] and greyhound dogs [3]. In general, the fatigue life of a generic structure is influenced by its loading history, by the quality of its material, and by its size. Generally speaking, larger components are
more prone to fatigue failure since a greater stressed volume implies a higher probability of finding a weak region where a crack forms, grows, and leads to failure of the entire structure; this size effect has been described in compact bone as well [6]. Based on these observations, a bone from a large animal is expected to have (1) an increase in microdamage accumulation and, thus, a higher risk of stress fracture than the same bone from a small animal of the same species or (2) the same risk of stress fracture but with different tissue organization or properties. In the canine species we have the chance to test this hypothesis in individuals with a common genetic ancestry [7] and a unique 40-fold difference in body mass. Microdamage accumulation from physiological loading has been described in this species [2, 3, 8, 9], but a mass-related incidence of stress fractures was not found. In our previous studies on the features of bones and their structural failure properties within a species [10, 11], we showed that allometric scaling of the bone length and the cross-sectional layout, without an increase in the amount of material proportionally employed, preserves linear with the animal mass the amount of energy necessary to fracture a bone and restrain the rise of stresses and strains in the cross section. This mass-driven dimensional optimization might imply a higher microdamage accumulation, but the absence of mass-related fatigue fracture incidence in dogs suggests that the microdamage accumulation is somehow mass-optimized as well.

The purpose of the present study was to examine the microstructural organization of the cortical bone tissue and naturally occurring fatigue microdamage in ground sections of bones from animals of the same species but of remarkably different size. Our goal was to determine whether the cortical bone damage status or the cortical microstructure—namely, porosity, osteon area, and osteocyte lacunar density—change with increasing animal mass. Furthermore, we assessed whether any of the investigated variables could explain how the bone tissue copes with an increased risk of microdamage accumulation related to larger bone sizes. Besides the experimental work, we discuss in the appendix (supplementary material) a mathematical model that, starting from the retrieved data, provides a theoretical explanation of how the bone tissue could dampen an increase in microdamage accumulation with an increase of the bone structure size.

Methods

Experimental Subjects

We collected 18 radii from entire fully grown dogs (age 9.8 ± 4.1 years [range 3–17]; nine females, nine males; body mass 17.7 ± 13 kg [range 2.5–45]) that died naturally or were euthanized due to causes unafflicting bone integrity. To take into account the influence of size on life expectancy [12, 13], we also expressed ages (t, years), determined from medical records, as the ratio between the age of each individual and the expected life span typical for its mass (normalized age \(t^*\), %). According to Greer et al. [14], we calculated life expectancy from the following equation: \(y = 13.620 + (0.0072 \times x_G) - (0.0538 \times x_W)\), where \(y\) is the expected life span, \(x_G\) is the dog height, and \(x_W\) is the dog mass. There was no history of fracture, angular deformities, or forelimb lameness in the sample population. Sixteen percent of the dogs were mongrels; the others were pure-breed dogs ranging from Yorkshire terriers to rottweilers.

Body and Bone Mass

We determined body mass on a standard balance with a precision of 0.5 kg. The foreleg was harvested, the soft tissues were removed, and the radial mass was determined with a balance, with a precision of 0.01 g. Bones were then wrapped in saline-soaked towels and frozen at −20°C until processed.

Histomorphometry

A 1-cm bone segment centered at 30% of the distoproximal radial length was excised, defatted in chloroform for 2 days, and then fixed in 70% ethanol. Specimens were bulk-stained in 1% basic fuchsins in a graded series of alcohols (80%, 90%, 100%) under a vacuum of 20 mmHg for 18 days. Stained specimens were then rinsed in 100% ethanol, infiltrated with washed methyl methacrylate monomer for 10 days under a vacuum of 20 mmHg, and embedded in methylmethacrylate (Sigma-Aldrich, St. Louis, MO). Three transverse sections were prepared for each bone segment with a diamond saw (Isomet; Buehler, Lake Bluff, IL) and reduced to a thickness of 150 μm with a grinder (Mecapol 2B; Presi, Grenoble, France) and sandpaper.

Fields of interest were filmed with a color video camera (DFC320; Leica, Deerfield, IL). A single observer collected the following data with the UTHSCSA image analysis software (developed by Willcox et al. at the University of Texas, Health Science Center, San Antonio, Texas; maxrad6.uthscsa.edu). Histomorphometric analyses were performed in agreement with the standard nomenclature [15].

Morphometric Analysis

Morphometric analysis was performed in bright light at 200× magnification. The data for three calcified sections

\[Springer \]
were averaged for each dog according to the literature [1, 2]. Microcracks were defined as linear structures with sharp borders, some depth of field, and basic fuchsin staining around. We did not measure diffuse staining of the matrix, and unstained cracks were regarded as artifacts associated with tissue processing, as previously suggested [9, 16]. The following histomorphometric variables were measured, according to Schaffler et al. [1]: bone area (B.Ar, mm²), microcrack density (Cr.Dn, n/mm²), and microcrack mean length (Cr.Le, μm). Microcrack morphology was classified according to Norman and Wang [17] as follows: type 1, microcrack in the interstitial bone matrix; type 2, microcrack extending between the matrix and the cement line; type 3, microcrack along the cement line; type 4, interlamellar microcrack; type 5, microcrack within the osteon approaching, but not reaching, the cement line; type 6, microcrack within the osteon terminating at the cement line; and type 7, microcrack crossing the cement line.

Osteocyte Lacunar Density

We counted osteocyte lacunae using blue-violet epifluorescent light (425–440 excitation and 475-nm barrier filter) within five fields per quadrant at 400 × and calculated the osteocyte lacunar density (Oc.Dn, number/mm²). Lacunae were identified from the presence of fluorescence at their edges and the canalicular processes [18].

Porosity

We calculated porosity, expressed as a percentage, as the ratio between the void and the total area (Vd.Ar/T.Ar, %) in four fields per quadrant in bright light at 100 × in each of four quadrants (Vd.Ar/T.Arcranial, caudal, medial, lateral, %). Void areas included resorption and vascular spaces.

Bone Turnover

We estimated the activation frequency (Ac.f, n/mm²/year) and bone-formation rate (BFR/BV, mm³/mm³/year) using the following standard algorithm [19]:

\[Ac.f = \frac{[\beta(On.N.Int + On.N.Fg)]}{t} \]

where \(t \) is age (years) and

\[\beta = \left\{ 1 - \left[\frac{On.N.Int + On.N.Fg}{On.Ar} \right]^{-1} \right\}^{3.5} \]

We calculated bone formation rate as BFR/BV = Ac.f * On.Ar. We performed measurements in four fields of view in bright light at 100 × in each of four quadrants (cranial, caudal, medial, and lateral). Mean tissue age [20] was taken as the chronological age. As the role of osteon size and number in the control of crack propagation is unclear, we measured the mean osteon area (On.Ar, mm² [25 complete osteons]) and the number of intact (On.N.Int, n/mm² [>90% of perimeter intact]) and fragmentary (On.N.Fg, n/mm² [>10% of perimeter remodeled]) osteons.

Statistics

Statistics were analyzed using SPSS 17.0 for Windows (SPSS, Inc., Chicago, IL). Relationships between the investigated histomorphometric variables, \(t^a \), and bone mass were analyzed by a general linear multivariate (GLM) multivariate model using sex as a fixed factor. Correlations between cortical microstructure and microcrack density and length were estimated by Pearson’s coefficient. In order to evaluate the relationship between histomorphometric parameters (microdamage status, cortical microstructure, and bone turnover), age, bone mass, and sex, we ran a second GLM using age and bone mass as covariates and sex as a fixed factor. Additionally, we described with exponential equations the relationship between \(t^a \), bone mass, and the variables found significant using the GLM. The significance cut-off was \(P < 0.05 \).

Theoretical Model

Starting from the experimental data retrieved, we propose in the appendix (supplementary material) a mathematical model that provides a theoretical explanation of how the bone tissue could dampen an increase in microdamage accumulation with an increase of the size of the bone structure.

Results

Table 1 shows mean and standard deviation parameters for bone mass, body mass, age, and normalized age as distributed according to sex.

<table>
<thead>
<tr>
<th></th>
<th>Males (n = 9)</th>
<th>Females (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone mass (g)</td>
<td>32.05 ± 22.36</td>
<td>26.23 ± 17.89</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>18.39 ± 15.15</td>
<td>16.94 ± 11.30</td>
</tr>
<tr>
<td>Age (years)</td>
<td>10.11 ± 4.14</td>
<td>9.56 ± 4.39</td>
</tr>
<tr>
<td>Normalized age (%)</td>
<td>76 ± 27</td>
<td>72 ± 31</td>
</tr>
</tbody>
</table>

Table 1 Mean and standard deviation parameters for the investigated population according to gender

\(\odot \) Springer
activation frequency and bone turnover were in agreement with previous studies on similar models [2, 8] and are reported in Table 2.

The percent of type 2 cracks was 66.2%, while percents for types 1 and 3–7 were 2.5%, 1.3%, 11.3%, 3.7%, 8.7%, and 6.3%, respectively. Type of microdamage and microdamage localization were not influenced by body mass or by sex (data not shown) according to the first GLM. No correlation was found between cortical microstructure and microcrack density and length.

The second GLM showed that bone mass is a good predictor for microcrack density, bone turnover is influenced only by age, whereas the cortical microstructural organization is not influenced by age, mass, or sex (Table 3). In our experimental settings sex did not influence any of the investigated variables. Figure 1 describes the relations between microcrack density and bone mass, between activation frequency and normalized age, and between bone-formation rate and normalized age through exponential equations.

Discussion

Damage accumulation is a normal response of composite materials to mechanical loading, and structure size is a recognized critical factor. In this study we investigated the effect of bone size on bone microdamage accumulation. We collected samples from pet dogs of a wide range of sizes in the second half of their expected life. We assumed their bones had been subjected daily to the low physiological cyclic loading consistent with pet lifestyle. Bones from animals that died at different ages were clearly subjected to a different number of cycles. However, we assumed that, under these loading conditions, the bones were in a phase of benign microdamage accumulation. In this phase we took a picture of the “characteristic damage state” of each bone in a balanced condition between the crack growth process and the repair process by bone turnover.

Our results are reliable if compared to previous works performed on animals of the same size [17]. Male and female dogs of different size have the same cortical bone microstructural organization. Their tissue is equally damaged, and the characteristics of the damaged matrix are similar. The microcrack length in particular was found to be quite constant. The crack length is considered to reflect the magnitude of the cyclic loads applied [21]. Interspecies analyses have already demonstrated that microcrack length does not change with age [6, 22–26]. Our data confirm that the cyclic loading environment affecting a bone does not vary with biological age, as Frank et al. [2] already proposed, and that it does not vary with size within a single species.

Surprisingly, we found that age does not influence microdamage status. Previous studies showed that the sampling technique may highlight the mass or the age effect. Muir and Ruaux-Mason [8], for example, did not find any significant associations among age, body weight, and microcrack density and length in medium and large-breed dogs, while Frank et al. [2] found significant

<table>
<thead>
<tr>
<th>Measured parameter</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcrack density (n/mm²)</td>
<td>0.06 ± 0.04</td>
</tr>
<tr>
<td>Microcracks mean length (mm)</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td>Osteocyte lacunar density (n/mm²)</td>
<td>831 ± 162</td>
</tr>
<tr>
<td>Mean osteon area (mm²)</td>
<td>0.015 ± 0.004</td>
</tr>
<tr>
<td>Percentage porosity (%)</td>
<td>34.66 ± 19.1</td>
</tr>
<tr>
<td>Activation frequency (n/mm²/year)</td>
<td>2.66 ± 1.50</td>
</tr>
<tr>
<td>Bone-formation rate (mm³/mm³/year)</td>
<td>0.04 ± 0.02</td>
</tr>
</tbody>
</table>

Table 2 Mean and standard deviation for the investigated histomorphometric parameters

<table>
<thead>
<tr>
<th>Dependent variables</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct model</td>
<td>5.197</td>
<td>0.023</td>
</tr>
<tr>
<td>Microcrack density</td>
<td>0.650</td>
<td>0.602</td>
</tr>
<tr>
<td>Microcrack mean length</td>
<td>1.09</td>
<td>0.255</td>
</tr>
<tr>
<td>Percentage porosity</td>
<td>6.268</td>
<td>0.014</td>
</tr>
<tr>
<td>Activation frequency</td>
<td>7.786</td>
<td>0.007</td>
</tr>
<tr>
<td>Bone formation rate</td>
<td>1.894</td>
<td>0.201</td>
</tr>
<tr>
<td>Mean osteon area</td>
<td>5.197</td>
<td>0.023</td>
</tr>
<tr>
<td>Microcrack density</td>
<td>0.013</td>
<td>0.910</td>
</tr>
<tr>
<td>Microcrack mean length</td>
<td>0.640</td>
<td>0.444</td>
</tr>
<tr>
<td>Percentage porosity</td>
<td>0.198</td>
<td>0.667</td>
</tr>
<tr>
<td>Activation frequency</td>
<td>9.991</td>
<td>0.012</td>
</tr>
<tr>
<td>Bone formation rate</td>
<td>5.254</td>
<td>0.048</td>
</tr>
<tr>
<td>Mean osteon area</td>
<td>3.909</td>
<td>0.079</td>
</tr>
<tr>
<td>Bone mass</td>
<td>8.653</td>
<td>0.016</td>
</tr>
<tr>
<td>Microcrack density</td>
<td>0.812</td>
<td>0.391</td>
</tr>
<tr>
<td>Microcrack mean length</td>
<td>3.727</td>
<td>0.086</td>
</tr>
<tr>
<td>Percentage porosity</td>
<td>0.061</td>
<td>0.810</td>
</tr>
<tr>
<td>Activation frequency</td>
<td>3.188</td>
<td>0.108</td>
</tr>
<tr>
<td>Bone formation rate</td>
<td>5.062</td>
<td>0.051</td>
</tr>
<tr>
<td>Mean osteon area</td>
<td>0.103</td>
<td>0.910</td>
</tr>
<tr>
<td>Microcrack density</td>
<td>0.639</td>
<td>0.444</td>
</tr>
<tr>
<td>Microcrack mean length</td>
<td>0.004</td>
<td>0.953</td>
</tr>
<tr>
<td>Percentage porosity</td>
<td>0.420</td>
<td>0.533</td>
</tr>
<tr>
<td>Activation frequency</td>
<td>0.278</td>
<td>0.611</td>
</tr>
<tr>
<td>Bone formation rate</td>
<td>0.021</td>
<td>0.888</td>
</tr>
<tr>
<td>Sex</td>
<td>1.09</td>
<td>0.201</td>
</tr>
</tbody>
</table>

Model for histomorphometric parameters (dependent variables), normalized age and bone mass (covariates), and sex (fixed factor). Values statistically significant are highlighted in bold.
relationships between microdamage and age. In the population we examined, microdamage status worsened with age, but the correlation was not significant. Furthermore, the activity of the tissue, namely, the bone-formation rate and the acquisition frequency, decreased with age, both chronological and adjusted for life expectancy.

The bone turnover was similar in individuals of remarkably different mass, suggesting that the metabolic cost to maintain the bone healthy is size-invariant. Larger animals showed less microdamage accumulation, contradicting what we first expected and indirectly confirming that larger and small animals have the same risk of fatigue failure. We could expect a different tissue microscopic organization since some authors debated on the effect of osteon size on the control of crack propagation in cortical bone [27–29]. Some suggested that smaller and/or more osteons may better prevent catastrophic failure and slow the cracks, whereas others argued that osteon size does not influence work to failure [30, 31]. The general view is that cortical bone tends to fracture where there are fewer and smaller osteons and is tougher where osteon packing and size are greater. In the investigated population though, we found that the osteon size, the porosity, and the osteocyte lacunar density do not significantly change according to bone mass. The main finding of the current study is that the microdamage status decreases as the individual’s mass increases; nevertheless, the investigated histomorphometric variables were not able to explain this result. We therefore hypothesize that some bone material properties, not under investigation in this work, change according to animal mass. In the appendix (supplementary material), we propose a theoretical explanation of how the bone tissue could dampen an increase in microdamage accumulation with an increase of the size of the bone structure.

When considering fatigue, it must be briefly recalled that body size has a profound impact on many aspects of animal physiology, including locomotion. On a mass-specific basis, small animals use stiffer legs [32] and more metabolic energy [33] than large animals to run a fixed distance. At their lowest galloping speed, small mammals sweep through larger hindlimb excursion angles [34] and use greater stride frequencies [35, 36]. Straightforward observation of walking or running dogs reveals that a small dog takes many more strides than a large dog to cover the same distance. The same fatigue life is perhaps optimized, requiring also proportionality to lifetime expectancy and

Fig. 1 The exponential equation describes the trend of microcrack density with respect to bone mass (a), the trend of activation frequency with respect to normalized age (t^*) (b), and the trend of bone-formation rate (BFR/BV) with respect to normalized age (t^*). Equations and R^2 are indicated.
mean loading frequency (see Appendix as supplementary material). Since under physiological loading, bone remodeling is a mass-invariant process bent on removing microdamage at a constant rate, the behavior of large animals somehow offsets the disadvantages of size on bone fatigue properties. As the size increases, more time is required to perform a certain number of cycles and, thus, to accumulate a certain amount of microdamage.

This study has several limitations. It is founded on a small number of samples whose loading history can be only conjectured. In addition, conventional methods of measuring cracks on random transverse sections convey limited information, especially about crack shape [6]. Here, we assume that microcracks have an elliptical shape and a fixed aspect ratio (theoretical longitudinal: transverse = 5:1) [6, 37, 38]. Three-dimensional analysis may reveal different information on the strategy adopted by the bone tissue in order to cope with the size effect on its fatigue properties. Lastly, we assumed that exactly the same bone segment could be stained and analyzed and that the matrix material properties were characteristic of each bone mass, while it was also demonstrated that fracture toughness depends on bone location [39].

In conclusion, we found bones from animals belonging to the same species, but of remarkably different size, to have similar cortical microstructural organization not associated with a mass-related increase in bone-formation rate. In larger bones there is a higher probability of finding a weak region where a crack can arise and grow. As we demonstrated, this is not the case within the same species as we found an exponential decrease of the microdamage density as bone mass increase. In the appendix (supplementary material) [40, 41] we theoretically propose a mass-related change in the material fracture toughness. We suggest tuning at the molecular and supramolecular levels during tissue morphogenesis targeted to reach an optimal reverse change in the material fracture toughness. We have shown that tuning at the molecular and supramolecular levels during tissue morphogenesis targeted to reach an optimal structure and function is needed to cope with the size effect on its fatigue properties. Lastly, we assumed that exactly the same bone segment could be stained and analyzed and that the matrix material properties were characteristic of each bone mass, while it was also demonstrated that fracture toughness depends on bone location [39].

Acknowledgements P. D. was supported by a fellowship from the Regione Piemonte, and S. Z. M. B. was supported by a fellowship of MIUR (COFIN 2003).

References

 Springer