Plasma and thermoforming treatments to tune the bio-inspired wettability of polystyrene

E. Lepore, P. Faraldi, D. Bongini, L. Boarino, N. Pugno

Laboratory of Bio-inspired Nanomechanics “Giuseppe Maria Pugno”, Department of Structural Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Indesit Company, Viale Aristide Merloni 47, 60044 Fabriano (AN), Italy
National Institute of Metrological Research, Strada delle Cacce 91, 10135 Torino, Italy
National Institute of Nuclear Physics, National Laboratories of Frascati, Via E. Fermi 40, 00044 Frascati, Italy

Article info

Article history:
Received 16 November 2010
Received in revised form 19 January 2011
Accepted 17 May 2011
Available online 23 May 2011

Keywords:
A. Nano-structures
A. Smart materials
B. Wettability
D. Surface analysis
Lotus

abstract

This paper shows the effects on wettability of plasma and thermoforming treatments on 14 different polystyrene (PS) surfaces, with a comparison with a lotus leaf. Quantitative roughness analyses of PS surfaces and lotus leaf, by three-dimensional optical profilometer and scanning electron microscope, have been carried out. We characterized the water drop sliding by measuring the contact angle, sliding angle, sliding volume and sliding speed. A relevant correlation between technological treatment, surface roughness parameters and wetting measurements clearly emerges, suggesting the plasma/thermoforming treatment as a process for enhancing the hydrophilic/hydrophobic behavior of PS surfaces. Determination of the static and resistant forces of the drop sliding on the surfaces concludes the paper.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Water-repellent (or super-hydrophobic) and dirt-free (or self-cleaning) natural surfaces were probably observed for the first time more than 2000 years ago; however, only in the 20th century scientists studied these two related phenomena on some natural leaves [1–10], e.g. the famous lotus *Nelumbo nucifera*, on which “raindrops take a clear, spherical shape without spreading, which probably has to be ascribed to some kind of evaporated essence”, as Goethe described in 1817 [11].

In contrast to the Goethe’s conjecture, the so called lotus-effect is governed more than by chemistry (Young’s law [12]) by topology (Wenzel’s law [13], Cassie–Baxter’s law [14]) and hierarchical architectures [15,16] (similar to what we observe on the strength and toughness of materials [17–21]). The contribution of surface roughness on super-hydrophobic/self-cleaning behavior has been extensively shown in the literature [22–34]. However, in some applications, materials should be hydrophilic more than hydrophobic, e.g. in order to maximize wettability.

In this paper, we study the effects of plasma or thermoforming treatments on different polystyrene (PS) surfaces. We have considered seven PS surfaces before (A_p) or after (B_p) the plasma treatment and fourteen PS surfaces before (A_t) or after (B_t) the thermoforming treatment. All these surfaces have been analysed with a three-dimensional optical profilometer and a field emission scanning electron microscope. The hydrophilic behavior given by plasma treatment is quantified by deposition distilled water drops on PS horizontal surfaces with controlled or random volumes, showing a relevant correlation between surface roughness parameters and contact angles (CA) measurements, in accordance with Wenzel theory. The effects of the thermoforming treatment are quantified by measuring the drop contact angle, sliding angle, volume and speed. Finally, we determine the static and resistant forces of a drop sliding on the surfaces.

2. Materials and methods

2.1. Plasma treatment

A commonly applied method to increase wettability and chemical reactivity of polymeric materials (by raising surface energy) is plasma discharge treatment, also known as corona treatment. Such treatment, invented by the Danish engineer Verner Eisby in the 1950s, is particularly suitable for continuous production processes, like the extruded PS sheets constituting the subject of the present paper, being safe, economical and capable of high line speed throughput.
Corona treatment is based on a high-frequency and high-voltage electrical discharge. The discharge is generated between an electrode and a counter electrode. The corona discharge has such a powerful impact on the substance surface that the molecular structure changes in a way that improves the surface wettability. In the presence of a high voltage discharge in an air gap, air ionization occurs. If a plastic material is placed in the discharge path, the electrons generated in the discharge impact the surface with energy of 3–10 keV. If a plastic material is placed in the discharge path, the surface wettability is improved.

### Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sa (µm)</td>
<td>0.671 ± 0.0142</td>
</tr>
<tr>
<td>Sq (µm)</td>
<td>0.859 ± 0.0165</td>
</tr>
<tr>
<td>Snp (µm)</td>
<td>4.267 ± 0.3092</td>
</tr>
<tr>
<td>Sv (µm)</td>
<td>5.340 ± 1.8281</td>
</tr>
<tr>
<td>Sz (µm)</td>
<td>8.240 ± 0.6894</td>
</tr>
<tr>
<td>Ssk (%)</td>
<td>0.274 ± 0.0118</td>
</tr>
<tr>
<td>Sdr (%)</td>
<td>5.583 ± 1.041</td>
</tr>
</tbody>
</table>

For the purposes of the present paper, PS extruded slabs have been treated with the industrial “Ferrarini and Benelli” corona discharge system, integrated within refrigerators production line at Indesit Company; main characteristics of the equipment are: nominal power (7.5 kW), corona discharge device working frequency (30 kHz), achievable surface energy after treatment (1.4–5.6 × 10^3 N/m), material temperature in treatment area (80 °C), performance test method (ASTM Standard Test Method D2578-84, “Wetting Tension of Polyethylene and Polypropylene Film”).

### 2.2. Thermoforming treatment

Thermoforming is the technology almost universally applied for refrigerator cabinet liner and door internal surface manufacturing; such technique allows high throughput production, together with a very good net shape surface finishing. Main phases of the process are: pre-heating (100 °C), peak temperature (180 °C), final temperature (70 °C). After thermoforming, thickness reduction can exceed 90% in some areas: a careful control is needed to verify that sheet is kept robust (e.g. no breakage of aesthetic or functional layer), tuning the process and the material characteristics.

### 2.3. Surface characterization

The characterization of PS surfaces was performed with a three-dimensional optical profilometer, TalySurf CLI 1000, equipped with the CLA Confocal Gauge 300HE or a mechanical cantilever with 300 µm range and 10 mm vertical resolution or with 546 l/µm range and 10 nm vertical resolution from Taylor Hobson, Leicester, UK. The parameters tuned during the analysis are the measurement speed equal to 200 µm/s, the return speed equal to 1 mm/s or 500 µm/s, the sampling rate equal to 150 Hz or 40 Hz, the measurement area of 500 µm cut-off. See [38–40] for a detailed explanation of the classical roughness parameters extracted (Sa, Sq, Sp, Sv, Sdr, Sdr).
We also observed the PS surfaces and lotus leaf by means of a field emission scanning electron microscope (FESEM, ZEISS SUPRA 40 for Ap, Bp and At samples and lotus leaf, or FEI-Inspect™ F50 for Bt samples) equipped with a field emission tungsten cathode. Samples of $C_24$ were obtained, fixed to aluminum stubs by double-sided adhesive carbon conductive tape (Nisshin EM Co. Ltd.), ethanol-cleaned (except for lotus leaf used as is) and air-dried. Samples Ap, Bp and lotus leaf or At and Bt were chrome or gold-coated, approximately 8 or 3.6 nm.

2.4. CA measurement

The wettability of PS surfaces and lotus leaf was determined by measuring the static CA of distilled water droplets over the samples, fixed to a horizontal plane by a double-sided adhesive tape and cleaned with ethanol before drop deposition, in order to reduce the negative influence of sample cleanliness on contact angle measurements [41–44]. We consider a series of 10 random-volume drops, gently deposited on the substrate with a standard single use syringe, and nine controlled-volume drops ($0.5$, $0.7$, $0.9$, $1.1$, $1.3$, $1.5$, $1.7$, $1.9$, $2.0 \mu l$), deposited with a digital micro-pipette (Gilson, Ultra-range U2-Model, 0.2–2.0 \mu l). The contact angle was recorded with an OLYMPUS MJU 1010 digital photocamera, measured and statistically analysed with the software ImageJ 1.41o.

2.5. Sliding measurements

Two conceptually distinct procedures were used to evaluate the sliding angles on Bt samples and lotus leaf: (1) fixing the volume ($\sim 16 \mu l$) and measuring the angle at sliding or (2) fixing the angle ($90^\circ$) and measuring the sliding volume.
Fig. 2. Surface topography before plasma treatment. PS surface of sample 2Ap, as representative of surface topography of samples 1Ap and 2Ap. (a) 3D topography and (b) 2D profile (extracted at 50 mm from the edge of the square measured area).

Fig. 3. Surface topography before plasma treatment. PS surface of sample 3Ap, as representative of surface topography of sample 3Ap, 4Ap, 6Ap and 7Ap. (a) 3D topography and (b) 2D profile (extracted at 50 mm from the edge of the square measured area).
Fig. 4. Surface topography before plasma treatment. PS surface of sample 5Ap, (a) 3D topography and (b) 2D profile (extracted at 50 mm from the edge of the square measured area).

Fig. 5. Surface topography after plasma treatment. PS surface of sample 4Bp, as representative of surface topography of all plasma treated samples. (a) 3D topography and (b) 2D profile (extracted at 50 mm from the edge of the square measured area).
3. Results

3.1. Surface characterization

Table 1 summarizes the extracted roughness parameters from the profilometer whereas Fig. 1 shows the related FESEM images (surface morphologies at the same magnification) of all PS materials. Figs. 2–4 show the plasma untreated PS surfaces, while Fig. 5 shows the typical topography of plasma treated samples. Fig. 6 shows the effects of thermoforming treatment through samples 1 and 4 considered as examples and Fig. 7 displays the profiles extracted at 50 mm from the edge of the square measured area.

![Fig. 6. 3D PS surface topography of sample 1 (up) and 4 (down), before (left) and after (right) thermoforming treatment.](image)

![Fig. 7. 2D PS profiles of sample 1 (up) and 4 (down), before (left) and after (right) thermoforming treatment. Each profile was extracted at 50 mm from the edge of the square measured area shown in Fig. 6.](image)
Finally, the SEM morphology of the adaxial leaf surface of the water-repellent and self-cleaning lotus are reported in Fig. 8.

### 3.2. CA measurement

In Table 2, the mean values and standard deviation of 19 CA measurements for each PS surface are reported.

### 3.3. Sliding measurements

The results of the first applied procedure for the determination of sliding angle show that all PS surfaces have a sliding angle greater than 90° (no sliding). The exception is represented by the sample 4Bt, showing a sliding angle of 48° ± 15.7° (Fig. 9).

The sliding volume $V_s$ and the sliding speed $v_s$ for Bt surfaces were determined by means of the second procedure. The values

![Fig. 9. Sample 4Bt at 36°, the sliding was observed at 48°.](image-url)
of \( V_s \) and \( v_s \) were calculated from five measurements per each sample, see Fig. 10.

4. Discussion

4.1. Plasma treatment

According to Wenzel \[ \cos \theta_A = \frac{r_A}{r_{A,B}} \cos \theta_B \], where \( r_A \) \((1.0006–1.0558) \) and \( r_B \) \((1.0629–1.2080) \) are the Wenzel roughness parameters (reported in Table 3), before or after the plasma treatment respectively, \( \theta_{A,B} \) is the corresponding theoretical contact angle; thus, we could evaluate the effect of the plasma treatment by the increment of the superficial roughness. The comparison between theoretical predictions and experimental data is presented in Fig. 11.

According to the FESEM microscopies reported in Fig. 1, the plasma treatment increases the surface roughness. It is necessary to consider sample 5Ap separately, since it presents a specific initial (untreated, Fig. 4) situation showing several distributed valleys with greater depth than in other samples, thus implying the greatest value of the Sdr parameter (11%); after plasma treatment, the Sdr parameter is of the same order of magnitude as for the other samples (see Table 1). The plasma treatment levels the surface with deep valleys, as we can see in sample 5, and by surface erosion eliminates the presence of excessive high peaks. Except for sample 5, the plasma treatment increases the roughness parameters (see \( S_a, S_q, S_v, S_z \) in Table 1) leading to more valleys than peaks (negative value of Ssk) with a greater effective area than the untreated surfaces (greater value of Sdr). Apart from samples 2Ap and 7Ap, we observed a decrement of CA as expected from the

**Table 3**

<table>
<thead>
<tr>
<th>Sample</th>
<th>( r_A )</th>
<th>( r_B )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ap</td>
<td>1.0558</td>
<td>1.0208</td>
</tr>
<tr>
<td>2Ap</td>
<td>1.0528</td>
<td>1.1450</td>
</tr>
<tr>
<td>3Ap</td>
<td>1.0027</td>
<td>1.0709</td>
</tr>
<tr>
<td>4Ap</td>
<td>1.0011</td>
<td>1.1297</td>
</tr>
<tr>
<td>5Ap</td>
<td>1.1100</td>
<td>1.0629</td>
</tr>
<tr>
<td>6Ap</td>
<td>1.0006</td>
<td>1.1166</td>
</tr>
<tr>
<td>7Ap</td>
<td>1.0063</td>
<td>1.1553</td>
</tr>
</tbody>
</table>

**Fig. 10.** Sliding volume or speed of B surfaces.

**Fig. 11.** Experimental measurements vs. theoretical predictions of CA for samples after plasma treatment.

**Fig. 12.** Static and resistant forces on B surfaces.
Wenzel theory for an intrinsically hydrophilic material subjected to an increment of roughness. Thus plasma treatment is ideal for increasing the PS surface wettability.

4.2. Thermoforming treatment: adhesive static and resistant forces

Considering the roughness parameters reported in Table 1 and the profilometer 3D-images of Fig. 6, we could observe that the thermoforming treatment globally decreases the roughness parameters (see Sa, Sq, Sp, Sv, S2 in Table 1). Referring to the Sdr parameter close to 0%, we can say that the thermoforming treatment renders the surfaces smoother. Apart from samples 13A, we observed an increment of the CA as expected from the Wenzel theory for an intrinsically hydrophilic material subjected to a decrement of the roughness.

Finally, we calculate the static and the resistant forces of sliding drops for Bt vertical (at 90°) surfaces (Fig. 12) and on a natural 6-month dried lotus leaf for comparison. The complete measured wettability parameters of lotus leaf are summarized in Table 4.

The static force (FS) was computed as follows:

$$ F_S = m \cdot g = V \cdot \rho_0 \cdot g $$  \hspace{1cm} (1)

where V is the drop sliding volume, ρ0 is water density and g is gravity acceleration. The resistant force (F_R) was obtained, assuming a resistant force during sliding on PS proportional to the low velocity observed, as:

$$ F_R = F_S \cdot \left(1 - \frac{F_{RL}}{F_S}\right) \cdot \frac{V}{V_{el}} $$  \hspace{1cm} (2)

where F_s is the static force of the surface, F_{RL} and V{el} are the resistant force (0.032 ± 0.009 μN) and the sliding speed (233 ± 25.82 mm/s) for the lotus leaf, respectively, and V is the sliding speed of the surface. The resistant force of the lotus leaf was computed as proportional to the velocity square, due to the high velocity observed:

$$ F_{RL} = \frac{1}{2} \cdot \rho_0 \cdot V_{el}^2 \cdot A_r \cdot C_p $$  \hspace{1cm} (3)

where A_r is the resistant area (2.32 ± 0.327 mm²) and C_p is drag coefficient (equal to ~0.47 since the shape of the sliding drop is nearly a sphere), finding F_{RL} = 0.03 μN. The resistance forces are found to be negligible, thus static and resistant force are nearly identical (Fig. 12).

5. Conclusions

In this paper the effects of plasma and thermoforming treatments on the water sliding behavior have been studied on 14 different PS surfaces, in terms of contact angle, sliding angle, sliding volume, sliding speed, and static and resistant forces acting on the sliding drop. We compared the experimental results with those on a natural 6-month dried lotus leaf. A significant correlation between technological treatment, surface roughness parameters and wetting measurements clearly emerges. Thus, the analysis suggests that plasma/thermoforming are ideal treatments to tune the wettability and enhance the hydrophilic/hydrophobic behavior of PS surfaces.

Acknowledgments

The authors would like to thank M. Biasotto of the Department of Special Surgery and B. Codan of the Division of Dental Sciences and Biomaterials of the Department of Biomedicine at the University of Trieste for their help in using the surface profilometer. The authors wish to sincerely thank A. Chiodoni, Physical Department, Politecnico di Torino for the fundamental help performing the FE-SEM micrographs of A0, B0 and A0 samples and lotus leaf. The authors thank James Vanzo for the final English grammar supervision. NMP is supported by “Metrology on a cellular and macromolecular scale for regenerative medicine” – metregen (2009–2012).

References

[16] Pugno NM. The Nanomechanics in Italy, Research signpost (IND); 2007.

Table 4

<table>
<thead>
<tr>
<th>Contact angle</th>
<th>Sliding angle</th>
<th>Sliding volume</th>
<th>Sliding speed</th>
<th>Static force</th>
<th>Resistant force</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA (°)</td>
<td>153.4 ± 3.28</td>
<td>26.2 ± 3.64</td>
<td>4.7 ± 1.15</td>
<td>0.043 ± 0.008</td>
<td>0.032 ± 0.009</td>
</tr>
</tbody>
</table>

Contact angle, sliding angle, sliding volume and speed of a natural 6-month dried adaxial leaf surface of lotus.


