Elastic and transport properties of the tailorable multifunctional hierarchical honeycombs

Yongtao Sun \(^a\), Qiang Chen \(^b\), Nicola Pugno \(^c,d,\ast\)

\(^a\) School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
\(^b\) Laboratory of Biomechanics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
\(^c\) Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento I-38123, Italy
\(^d\) Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento), Italy

Abstract

In this paper, we analytically studied the in-plane elastic and transport properties of a peculiar hexagonal honeycomb, i.e., the multifunctional hierarchical honeycomb (MHH). The MHH structure was developed by replacing the solid cell walls of the original regular hexagonal honeycomb (ORHH) with three kinds of equal-mass isotropic honeycomb sub-structures possessing hexagonal, triangular and Kagome lattices. Formulas to calculate the effective in-plane elastic properties and conductivities of the MHH structure at all densities were developed. Results show that the elastic properties of the MHH structure with the hexagonal sub-structure were weakly improved in contrast to those of the ORHH. However, the triangular and Kagome sub-structures result in substantial improvements by one or even three orders of magnitude on Young’s and shear moduli of the MHH structure, depending on the cell-wall thickness-to-length ratio of the ORHH. The present theory could be used in designing new tailorable hierarchical honeycomb structures for multifunctional applications.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Low-density cellular materials widely exist in Nature and exhibit fascinating mechanical properties in the aspects of strength, stiffness, toughness, etc. [1–3]. As a typical low-density cellular solid, honeycomb, which is mainly used as cores of light-weight sandwich panel structures [4–7], has been used in many fields, such as aerospace and automotive industries. Apart from its peculiar low-density and mechanical properties, honeycomb also shows other attractive functionalities, e.g., heat transfer, thermal protection, catalysis application and so on. In order to find optimal topologies for different multifunctional applications, varieties of prismatic honeycombs have been developed and studied in recent years.

Regarding the multifunctionality of honeycomb materials, Lu [8] and Gu et al. [9] reported that the regular hexagonal metallic cell, compared with triangular and square cells, provides the highest level of heat dissipation, which is comparable to that of the open-cell metal foams. Combining experimental and numerical methods, Wen et al. [10] revealed that the overall thermal performances of metallic honeycomb structures are superior to other heat sink media, such as metallic foams, lattice-frame materials, 3D Kagome structures and woven textile structures. Employing the topology optimization technique, Hyun and Torquato [11] showed that only the effective conductivity of the regular hexagonal honeycomb tends to the Hashin–Shtrikman (H–S) upper bounds; while for triangular and Kagome honeycombs, both the in-plane effective moduli and conductivity approach the H–S upper bounds [12,13]. Hayes et al. [14] studied the mechanical and thermal properties of linear cellular alloys with square cells, and concluded that the mechanical and heat transfer characteristics of the honeycomb materials outperformed those of the open- and closed-cell metallic foams with comparable relative density. Vaziri and his collaborators [15–25] focused on metallic sandwich panels with different kinds of cellular cores, such as honeycomb cores [15], square honeycombs [16–20], open-cell rhombic dodecahedron cellular structures [21] and pyramidal truss cores [22–25], and explored their multifunctional applications, such as energy absorption [24], sustaining shock loading [16–18] and underwater impulsive loading [19,20]. Besides, Evans et al. [26], Wadley et al. [27] and Wadley [28] reviewed the multifunctionalities and the fabrication technologies of the multifunctional periodic cellular metals with different topological structures.
Regarding the mechanical properties of honeycomb materials, Wang and McDowell [29] investigated the in-plane stiffness and yield strength of different periodic metallic honeycombs, and showed that the diamond, triangular and Kagome cells have superior in-plane mechanical properties than the hexagonal, rectangular and mixed square/triangular cells. Fleck and Qiu [30] analyzed the damage tolerance property of 2D elastic-brittle isotropic honeycombs and reported that Kagome cells have much higher fracture toughness than those of hexagonal and triangular cells.

Another concept related to honeycomb materials is the introduction of hierarchy. Compared with their single length scale microstructure counterparts, structural hierarchy in natural materials can result in significantly higher stiffness or strength efficiencies (i.e. stiffness- or strength-to-weight ratios), and maintain their flaw-tolerance or energy-consuming property [31–36]. Therefore, many researchers [37–44] have focused on the mechanical properties of the hierarchical cellular structures. Burgueno et al. [45] studied the hierarchical cellular designs for load-bearing bio-composite beams and plates. Kooistra et al. [46] investigated hierarchical corrugated core sandwich panels and revealed that second-order trusses can have much higher compressive and shear strengths than their equal-laminate first-order counterparts when relative densities are less than 5%. Fan et al. [47] studied two-dimensional cellular materials made up of sandwich struts and showed that the relevant mechanical properties of the materials are improved substantially by incorporating structural hierarchy. Inspired by diatom algae which contains nanoporous hierarchical silicified shells, Garcia et al. [48] revealed the toughening mechanism in the superductile wavy silica nanostructures by performing a series of molecular dynamics simulations. Taylor et al. [49] introduced the functionally graded hierarchical honeycombs by performing a set of finite element analyses, and their results suggested that the Young's modulus of the functionally graded hierarchical honeycomb can be 1.75 times that of its equal-laminate first-order hexagonal honeycomb if the structure is designed properly. Different from the topology of the common hierarchical honeycomb structures [37,38,43,49], Vaziri's group recently [50] developed a new hierarchical honeycomb structure by replacing every three-edge joint of a regular hexagonal lattice with a smaller hexagon, and showed that the Young's modulus of the hierarchical honeycombs with one level and two levels can be 2.0 and 3.5 times stiffer than their equal-laminate regular hexagonal honeycomb, respectively. And more, Chen and Pugno [42–44] explored the buckling behavior of 2D hierarchical honeycombs and Young's modulus and strength of 3D hierarchical foams by considering the surface effect at the bottom level of these structures.

In this paper, along the line, we analytically studied the in-plane elastic moduli and thermal conductivity of a multifunctional hierarchical honeycomb (MHH). The MHH structure is formed by replacing the solid cell walls of an original regular hexagonal honeycomb (ORHH) with three different isotropic honeycomb sub-structures possessing hexagonal, triangular or Kagome lattices. First, we derive the theoretical formulas of the effective elastic moduli of the regular hexagonal honeycombs for all densities. Then, the in-plane Young's, shear and bulk moduli of the three kinds of MHH structures are calculated. Besides, the effective in-plane conductivities of the MHH structures are also formulated through the H–S upper bounds.

2. Effective in-plane elastic moduli of the regular hexagonal honeycombs for all densities

Hyun and Torquato [51] analytically studied the effective in-plane properties of the regular hexagonal honeycomb for all densities via three-point approximations and expressed the effective Young's modulus E_x (Fig. 1b) as

$$E_x = \frac{\phi(2\zeta - 1)(\zeta + \eta - 1)}{[3 - 2\phi - 2(2 - \phi)(1 - \zeta) + (2 - \zeta - \eta)(2\phi(1 - \zeta) - 1)]}$$

in which ϕ is the relative density of the hexagonal honeycomb, E_x is the Young's modulus of its constituent solid, ζ and η are the three-point parameters (Fig. 1a). The simulation data of the effective Young's modulus E_x [51] are also provided in Fig. 1b. It is apparent that for the high density case ($\phi \geq 0.5$), the prediction by the three-point approximations method matches very well the simulation data, but for the lower density case, it overestimates the results, and in the super low density case, the overestimation is so great that the three-point approximations method is not valid any more.

It is well-known that for the low-density regular hexagonal honeycombs, the Euler beam theory and the Timoshenko beam theory can effectively predict their materials constants. Here, we extend the Euler beam theory and the Timoshenko beam theory to the all relative densities cases and compare the results with the three-point approximations. Under the Euler beam theory, Torquato et al. [52] expressed the effective Young's modulus E_x as:

$$E_x = \frac{3}{2} \phi^3$$

And employing the Timoshenko beam theory Gibson and Ashby [3] studied the elastic properties of the low density honeycombs. For the regular hexagonal honeycomb, the effective Young's modulus is given by:

$$E_x = \frac{4}{\sqrt{3}} \left(\frac{C_0}{P} \right)^{3/2} \frac{1}{1 + (5.4 + 1.5\psi_v)C_1}$$

in which ψ_v is the Poisson's ratio of its constituent solid and $t/l = \sqrt{3} \left(1 - \sqrt{1 - \phi} \right)$ is the cell-wall thickness-to-length ratio.

For honeycombs at all densities, the comparison between the Euler beam theory, Timoshenko beam theory, three-point approximations method and the simulation data is plotted in Fig. 1b. We can see that when $\phi \leq 0.5$ the result calculated by the Euler beam theory matches very well the simulation data, while the result is well predicted by the three-point approximations method when $\phi > 0.5$. Therefore, the effective Young's modulus of the regular hexagonal honeycombs for all densities can be piecewisely expressed as:

$$E_x = \left\{ \begin{array}{ll}
\frac{3}{2} \phi^3 & \phi \leq 0.5 \\
\frac{4}{\sqrt{3}} \left(\frac{C_0}{P} \right)^{3/2} \frac{1}{1 + (5.4 + 1.5\psi_v)C_1} & \phi > 0.5
\end{array} \right.$$
in which \(G_e \) and \(v_e \) are the effective in-plane shear modulus and Poisson’s ratio of the hexagonal honeycombs, respectively. Defining \(E_s/E_e = A \) and \(k_s/k_e = B \), Eqs. (4)–(8) provide the formula for \(G_e \):

\[
\frac{G_e}{E_s} = \frac{AB}{4B - 2A(1 - v_s)}
\]

(9)

Then, the effective Poisson’s ratio \(v_e \) of the regular hexagonal honeycombs can be derived through dividing Eq. (6) by Eq. (7):

\[
v_e = 1 - \frac{A}{B}(1 - v_s)
\]

(10)

To verify the expressions of \(E_s \), \(k_s \), and \(G_e \), Eq. (10) is depicted in Fig. 2 for the honeycombs at all densities with \(v_s = 1/3 \). Note that in the calculations and following sections, the three-point parameters \(\zeta \) and \(\eta \) are interpolated from Fig. 1a.

Fig. 2 shows excellent agreement with the existing results [3, 53], that is to say, \(v_s \) tends to 1 for the extreme low densities and tends to Poisson’s ratio of constituent solid \(v_s = 1/3 \) for the extreme high densities. This implies the validations of Eqs. (4), (5) and (9), which will be employed to study the relevant properties of the MHH. It is worth mentioning that different from the formula in Ref. [3], here Poisson’s ratio is not a constant when the relative density is low.

3. MHH with isotropic hexagonal sub-structure

3.1. Basic theory

First of all, we consider the MHH with the isotropic hexagonal lattice sub-structure (Fig. 3). The thicknesses of the ORHH (Fig. 3a) and MHH (Fig. 3b) are denoted by \(t_0 \) and \(t_1 \), respectively, and their lengths denoted by \(l_0 \) are considered to be identical. In particular, one of the MHH cell walls in Fig. 3b is shown in Fig. 3c, where the cell-wall thickness and length of the hexagonal cells are denoted by \(t_0 \) and \(l_0 \), respectively. The out-of-plane depth is a constant and identical for both structures.

The geometry of Fig. 3c implies:

\[
l_0 = n t_0 + (n + 1)(2t_0) = (3n + 2)t_0
\]

(11)

where \(n \) is the number of the solid hexagonal cell walls lying on the middle line of the MHH cell walls (e.g., in Fig. 3c, \(n = 8 \)). Defining \(\lambda = l_0/t_0 \) as the hierarchical length ratio, rearranging Eq. (11) provides,

\[
\lambda = \frac{1}{3n + 2}
\]

(12)

Then, defining \(N \) as the number of hexagons away from the middle line of the MHH cell walls (e.g., in Fig. 3c, \(N = 1 \)), and \(M \) the total number of half-thickness hexagonal cells in a MHH cell wall (see Appendix A), then, the relationship between \(M \) and \(N \) can be expressed as:

\[
M = 2N(2n + 1) + \frac{n}{3} - 4N
\]

(13)

with \(A_0 = [(2N + 1)(N - 1) + 1]/6 \). After that, basing on the mass equivalence between cell walls of the MHH and the ORHH, we find \(t_0 l_0 - \frac{1}{2\sqrt{3}}t_0^3 = 6 \times \frac{1}{2} \left(t_0 l_0 - \frac{1}{2\sqrt{3}}t_0^3 \right) M \), which gives

\[
t_0 = \frac{\sqrt{3}}{1} \left[1 - \sqrt{1 - \frac{2}{3} \left(\frac{t_0}{l_0} \right)^2 - \frac{1}{3} \left(\frac{t_0}{l_0} \right)^3 \left(1 - \frac{1}{2\sqrt{3}} \right) \frac{t_0}{l_0} } \right]
\]

(14)

Besides, a geometrical analysis in Fig. 3c provides \(N_{\text{max}} \), the upper bound of \(N \), and \(t_1 \), the thickness of the MHH cell walls:

![Figure 3](image-url)
\[N_{\text{max}} = \lfloor \frac{1}{2} \rfloor = \lfloor \frac{3n + 2}{2} \rfloor \]
\[t_1 = \begin{cases}
2N (\sqrt{3} + 1) + t_h & 1 \leq N \leq N_{\text{max}} - 1 \\
2 \times \frac{\sqrt{3}l_0}{2} & N = N_{\text{max}}
\end{cases} \]
\[t_0 = \left(\frac{2 \sqrt{3}N + 1}{\sqrt{3}} \right)^{\frac{3}{2}} \frac{1}{N} \leq N_{\text{max}} - 1 \]
where \(\lfloor \cdot \rfloor \) is the floor function, which denotes the largest integer not greater than the term in the bracket. Then, rearranging Eq. (16) gives:

\[N_{\text{min}} = \left \lfloor \frac{3n + 2 - \left(1 - \frac{1}{2} \sqrt{3} \frac{t_h}{l_0} \right) \left(\frac{t_h}{l_0} \leq \sqrt{3} \right)}{2} \right \rfloor \]

On the other hand, Eq. (14) requires \(1 - 2 / \left(3 \sqrt{3}^2 \right) t_0/l_0 \left(1 - \frac{1}{2} \sqrt{3} t_0/l_0 \right) \geq 0 \). Considering Eqs. (12) and (13), the inequality provides \(N_{\text{min}} \), the lower bound of \(N \):

\[\phi_h = \frac{2t_h}{\sqrt{3}l_0} \geq \frac{1}{3} \frac{t_h}{l_0} \leq \sqrt{3} \]

is the relative density of the hexagonal sub-structure. Denoting the effective Poisson’s ratio of the hexagonal sub-structure by \(\nu_h \), then, the relation \(G = E \left[2 \left(1 + \nu_h \right) \right] \) holds. Then, combining Eqs. (24) and (26) gives:

\[\nu_h = 1 - \frac{A_h}{B_h} \left(1 - \nu_i \right) \]

Thus,

\[G = \frac{E_h}{2 \left(1 + \nu_h \right)} \frac{1}{1 + \nu_h} = \frac{A_h \left(1 - \nu_i \right)}{B_h - A_h \left(1 - \nu_i \right)} \]

In the meantime, defining the in-plane Young’s, shear and bulk moduli and thermal conductivity of the MHH as \(E_M, G_M, k_M, \) and \(\sigma_M \), it is easy to obtain:

\[\frac{E_M}{E_i} = \frac{A_M}{A_0} \]

Similarly, from Eqs. (20), (25) and (32), we can get the relative in-plane bulk modulus \(k_M/k_0 \):

\[k_M = \frac{B_0}{B_i} \]

And from Eqs. (21), (24) and (33), we obtain the relative shear modulus \(G_M/G_0 \):

\[\frac{G_M}{G_i} = \frac{A_0B_M}{A_M} \frac{B_M - A_M \left(1 - \nu_i \right)}{B_0 - A_0 \left(1 - \nu_i \right)} \]

Finally, from Eqs. (23), (27) and (34), we find the relative thermal conductivity \(\sigma_M/\sigma_0 \):

\[\frac{E_M}{E_i} = \frac{A_M}{A_0} \]

Similarly, from Eqs. (20), (25) and (32), we can get the relative in-plane bulk modulus \(k_M/k_0 \):

\[\frac{k_M}{k_0} = \frac{B_0}{B_i} \]

And from Eqs. (21), (24) and (33), we obtain the relative shear modulus \(G_M/G_0 \):

\[\frac{G_M}{G_i} = \frac{A_0B_M}{A_M} \frac{B_M - A_M \left(1 - \nu_i \right)}{B_0 - A_0 \left(1 - \nu_i \right)} \]

Finally, from Eqs. (23), (27) and (34), we find the relative thermal conductivity \(\sigma_M/\sigma_0 \):

\[\frac{E_M}{E_i} = \frac{A_M}{A_0} \]

is the relative density of the hexagonal sub-structure. Denoting the effective Poisson’s ratio of the hexagonal sub-structure by \(\nu_h \), then, the relation \(G = E \left[2 \left(1 + \nu_h \right) \right] \) holds. Then, combining Eqs. (24) and (26) gives:

\[\nu_h = 1 - \frac{A_h}{B_h} \left(1 - \nu_i \right) \]

Thus,

\[G = \frac{E_h}{2 \left(1 + \nu_h \right)} \frac{1}{1 + \nu_h} = \frac{A_h \left(1 - \nu_i \right)}{B_h - A_h \left(1 - \nu_i \right)} \]

In the meantime, defining the in-plane Young’s, shear and bulk moduli and thermal conductivity of the MHH as \(E_M, G_M, k_M, \) and \(\sigma_M \), it is easy to obtain:

\[\frac{E_M}{E_i} = \frac{A_M}{A_0} \]

Similarly, from Eqs. (20), (25) and (32), we can get the relative in-plane bulk modulus \(k_M/k_0 \):

\[\frac{k_M}{k_0} = \frac{B_0}{B_i} \]

And from Eqs. (21), (24) and (33), we obtain the relative shear modulus \(G_M/G_0 \):

\[\frac{G_M}{G_i} = \frac{A_0B_M}{A_M} \frac{B_M - A_M \left(1 - \nu_i \right)}{B_0 - A_0 \left(1 - \nu_i \right)} \]

Finally, from Eqs. (23), (27) and (34), we find the relative thermal conductivity \(\sigma_M/\sigma_0 \):

\[\frac{E_M}{E_i} = \frac{A_M}{A_0} \]

3.2. Effect of \(N \) on the relative elastic moduli and thermal conductivity of the MHH with hexagonal sub-structure

To investigate the influence of \(N \) on the relative elastic moduli \(E_M/E_i, G_M/G_i, k_M/k_0 \) and the relative thermal conductivity \(\sigma_M/\sigma_0 \), here, we discuss the following example with parameters \(n = 16, \lambda = 1/(3n + 2) = 0.02 \) and \(t_0/l_0 = 0.01, 0.05, 0.1, 0.2 \) and 0.3. Then, we can find \(N_{\text{max}} = 25 \) through Eq. (15), and \(N_{\text{min}} \) for each \(t_0/l_0 \) through Eq. (18). The results are reported in Figs. 4–6, respectively.

From Fig. 4a and b, we can see that almost for all \(t_0/l_0 \) considered, the optimal \(E_M/E_i \) and \(G_M/G_i, k_M/k_0 \) vary between 1 and 2, exist as \(N \) increases. Note that the optimal \(E_M/E_i \) and \(G_M/G_i, k_M/k_0 \) may not correspond to the same \(N \). The reason is that \(E_M/E_i \) and
EM/Eh depend on Poisson’s ratios \(\nu_s \) and \(\nu_h \) but \(G_O/G_e \) and \(G_M/G_h \) do not [51].

Figs. 5 and 6 show that the relative bulk modulus \(k_M/k_O \) and the relative thermal conductivity \(\sigma_M/\sigma_O \) increase with the increase of \(t_0/l_0 \), but in general, they are less than one. This implies that the effective bulk modulus and thermal conductivity of the MHH with regular hexagonal sub-structure are less than those of the ORHH structure. Of particular interest, there is the lowest value for the thermal conductivity, and this could be used to design low heat conductivity materials with the optimal topology.

3.3. The effects of \(t_0/l_0 \)-the cell-wall thickness-to-length ratio of the ORHH

To investigate the effects of the cell-wall thickness-to-length ratio \(t_0/l_0 \) of the ORHH on the relative elastic moduli and thermal conductivity of the MHH structure, again, we use the above example given in Section 3.2. We maintain \(n = 16 \), \(\lambda = 0.02 \) but vary \(t_0/l_0 \) from 0.01 to 0.5 with an increment of 0.01. In fact, under the same \(N \), the value of \(G_M/G_O \) is slightly greater than \(E_M/E_O \) (Fig. 4), so here we only consider the relative Young’s modulus \(E_M/E_O \) influenced by \(t_0/l_0 \). Regarding \(\sigma_M/\sigma_O \) and \(k_M/k_O \), the discussions on them will not be treated in this section, since their values are less than one (Figs. 5 and 6), which shows the inferior properties of the MHH to those of the ORHH.

Finally, the maximum \(E_M/E_O \) influenced by \(t_0/l_0 \) is reported in Fig. 7. We can see that the maximum \(E_M/E_O \) increases before \(t_0/l_0 \) reaches 0.07 but after that it decreases. In other words, the optimal \(E_M/E_O \) of the MHH with hexagonal sub-structure exists at \(t_0/l_0 = 0.07 \), of which the value approximately equals 2. The result is comparable to the finite element result given by Taylor et al. [49].

4. MHH with triangular sub-structure

4.1. Basic theory

In this section, we obtain the second topology of the MHH by substituting the ORHH cell walls with the equal-mass isotropic triangular sub-structure, see Fig. 8. As defined in Section 3, the hierarchical length ratio is expressed as
\[\frac{t_1}{t_0} = \begin{cases} \left(\frac{\sqrt{3}N + \frac{3}{8}l}{6} \right), & 1 \leq N \leq N_{\text{max}} - 1 \\ \sqrt{3}, & N = N_{\text{max}} \end{cases} \]

(45)

Then, rearranging Eq. (44) gives,

\[\frac{t_1}{l_0} = \left\{ \begin{array}{ll} \left(\frac{\sqrt{3}N + \frac{3}{8}l}{6} \right), & 1 \leq N \leq N_{\text{max}} - 1 \\ \sqrt{3}, & N = N_{\text{max}} \end{array} \right. \]

(45)

On the other hand, Eq. (41), requires \(1 - 4\sqrt{3}/(3^2M)\frac{t_0}{l_0} 1 - 1/(2\sqrt{3})\frac{t_0}{l_0} \geq 0 \). Then, employing Eqs. (40) and (42), the inequality gives \(N_{\text{min}} \), the lower bound of \(N \):

\[N_{\text{min}} = ce \left[\frac{6n - 1 - \sqrt{(6n - 1)^2 - 12n}}{6} \right] \]

(46)

Note that Eq. (46) may give \(N_{\text{min}} = 0 \), in this case \(N_{\text{min}} = 1 \).

Like the discussion in Section 3, we would like to analyze the effective elastic moduli and thermal conductivity of the triangular lattice-substructure. As mentioned in the introduction, Hyun and Torquato [11] showed that for triangular and Kagome honeycombs, both the in-plane effective moduli and conductivity approach the H–S upper bounds [12,13]. So, we approximately use the H–S upper bounds to calculate the effective elastic moduli and thermal conductivity of the triangular lattice sub-structure. Defining the in-plane Young's, shear and bulk moduli and thermal conductivity of the triangular sub-structure as \(E_t, G_s, k_t \) and \(\sigma_t \), we obtain:

\[E_t = A_t = \frac{\phi_t}{3 - 2\phi_t} \]

(47)

\[k_t = B_t = \phi_t G_t / k_t \]

(48)

\[G_t / E_t = C_t = \frac{1}{2(1 + \nu_t) (1 - \phi_t) (1 + 2G_t / k_t) + 1} \]

(49)

\[\sigma_t / \sigma_t = \frac{\phi_t}{2 - \phi_t} \]

(50)

where,

\[\phi_t = 2\sqrt{3} \frac{t_t}{l_t} - 3 \left(\frac{t_t}{l_t} \right)^2 \frac{t_t}{l_t} < \frac{1}{\sqrt{3}} \]

(51)

is the relative density of the triangular sub-structure. Denoting the effective Poisson's ratio of the triangular sub-structure by \(\nu_t \), the relation \(G_t / E_t = C_t / [2(1 + \nu_t)] \) holds. Then, combining Eqs. (47) and (49) gives,

\[\nu_t = 1 - \frac{A_t}{2C_t} - 1 \]

(52)

Thus,

\[G_t / E_t = \frac{C_t}{[2(1 + \nu_t)]} \]

(53)

\[1 - \nu_t = \frac{4C_t}{1 - \phi_t} - \frac{A_t}{2C_t} - 1 \]

(54)

Defining the in-plane Young's, shear and bulk moduli and thermal conductivity of the MHH with triangular sub-structure as \(E_{th}, G_{th}, k_{th} \) and \(\sigma_{th} \), we have:

\[E_{th} / A_{th} = \left\{ \begin{array}{ll} \frac{\phi_t^2}{\phi_t^2 + \phi_t^2 (2\phi_t - 1)/(1 - \phi_t)} & \phi_t \leq 0.5 \\ \frac{\phi_t^2}{\phi_t^2 + \phi_t^2 (2\phi_t - 1)/(1 - \phi_t)} & \phi_t > 0.5 \end{array} \right. \]

(54)

\[k_{th} / k_t = B_{th} = \frac{G_t / k_t \phi_t / (2\phi_t - 1)}{1 - \phi_t} \]

(55)

\[G_{th} / E_t = \frac{A_t B_{th}}{4B_t - 2A_t (1 - \phi_t)} \]

(56)

\[\sigma_{th} / \sigma_t = \frac{\phi_t}{2 - \phi_t} \]

(57)

where,
\[
\phi_M = \frac{2}{3} \frac{t_1}{t_0} - \frac{1}{3} \left(\frac{t_1}{t_0} \right)^2 \quad (t_1/t_0 \leq \sqrt{3})
\]

and \(\gamma_M \) and \(\eta_M \) interpolated from Fig. 1a, are the three-point parameters corresponding to \(\phi_M \).

Combining Eqs. (19), (47) and (54) gives the relative Young’s modulus \(E_M/E_O \):

\[
\frac{E_M}{E_O} = \frac{A_M A_t}{A_O}
\]

Similarly, from Eqs. (20), (48) and (55), we can find the relative bulk modulus \(k_M/k_O \):

\[
\frac{k_M}{k_O} = \frac{B_M B_t}{B_O}
\]

And from Eqs. (21), (47) and (56), we obtain the relative shear modulus \(G_M/G_O \):

\[
\frac{G_M}{G_O} = \frac{2B_M A_M A_t}{2B_O A_O (1 - \nu_1)} \frac{2B_O - A_O (1 - \nu_1)}{A_M A_O}
\]

Finally, from Eqs. (23), (50) and (57), the relative thermal conductivity \(\sigma_M/\sigma_O \) is derived:

\[
\frac{\sigma_M}{\sigma_O} = \frac{\phi_M \phi_t (2 - \phi_O)}{\phi_O (2 - \phi_M) (2 - \phi_t)}
\]

4.2. Effects of \(N \) on the relative elastic moduli and thermal conductivity of the MHH with triangular sub-structure

As discussed in Section 3, the influence of \(N \) on the effective elastic moduli and thermal conductivity of the MHH with triangular sub-structure are studied, here we consider the second example with parameters \(n = 20 \), \(\lambda = 1/n = 0.05 \), \(t_0/l_0 = 0.01 \), 0.05, 0.1, 0.2 and 0.3. Then, we immediately obtain \(N_{\text{max}} = 20 \) by Eq. (23) and the
lower bound N_{min} for each t_0/l_0 by Eq. (46). The relative elastic moduli $E_k/E_o, G_m/G_o, k_m/k_o$ and the relative thermal conductivity σ_m/σ_o vs N are reported in Figs. 9–12, respectively.

Figs. 9 and 10 show that the relative Young’s modulus E_k/E_o and the relative shear modulus G_m/G_o increase with the increase of N, and the thickness-to-length ratio t_0/l_0 has a strong influence on them. With respect to its equal-mass ORHH, the enhancements of the relative Young’s and shear moduli of the MHH can be one order (Figs. 9c and 10c) or even three orders of magnitude (Figs. 9a and 10a). Although the enhancement on Young’s modulus of the MHH decreases with the increase of t_0/l_0, a smaller t_0/l_0 (less than 0.3), its stiffening effect (Figs. 9 and 10) by the triangular sub-structure is much larger than that of the hexagonal counterpart (Fig. 4a and b).

The relative bulk modulus k_m/k_o and the relative thermal conductivity σ_m/σ_o shown in Figs. 9 and 12 have similar trends to those of the MHH with the hexagonal sub-structure reported in Section 3.2. Thus, the discussion is omitted here.

5. MHH with isotropic Kagome sub-structure

5.1. Basic theory

Kagome honeycomb has been revealed to have pronounced fracture toughness [30] and better thermal–mechanical performance than the triangular honeycomb [54]. Therefore, in this section, we will consider the third topology of the MHH, namely, substituting the ORHH cell walls with their equal-mass Kagome sub-structure (Fig. 13), and study its effective elastic moduli and thermal conductivity. In this case, the hierarchical length ratio is expressed as:

$$l_k = l_0 = \frac{1}{n} n = 4, 6, 8, 10 \ldots$$

(63)

where l_k is the side length of triangles in Kagome cells and n is the number of sides of the effective triangles on the middle line of the MHH cell walls. Again, the equal-mass principle provides $t_0/l_0 - \frac{1}{2\sqrt{3}} l_0^2 = 3 \times \left(t_k l_k - \frac{\sqrt{3}}{2} t_0^2\right) M$, and t_0/l_0 is derived as:

$$t_0/l_0 = \frac{1}{\sqrt{3}} \left[1 - \sqrt{1 - \frac{2\sqrt{3}}{3\sqrt{2} M} l_0 \left(1 - \frac{1}{2\sqrt{3}} t_0\right)}\right]$$

(64)

where M is the total number of triangles in a MHH cell wall, and it is expressed with n and N (as see Appendix C):

$$M = 2N(n - N) \left(1 \leq N \leq \frac{n}{2}\right)$$

(65)

in which N is the number of the Kagome representative cells away from the middle line of the MHH cell walls (e.g., in Fig. 13c, $N = 1$). Similar to those in Sections 3 and 4, a geometrical analysis in Fig. 13c provides N_{max}, the upper bound of N, and t_1, the thickness of the MHH cell walls:

$$N_{\text{max}} = \frac{n}{2}$$

(66)

$$t_1 = \left\{ \begin{array}{ll}
2N\sqrt{\frac{3t_0}{l_0}} + 2t_k & 1 \leq N \leq N_{\text{max}} - 1 \\
2 \times \sqrt{\frac{3}{2}} l_0 & N = N_{\text{max}}
\end{array} \right.$$

(67)

Then, rearranging Eq. (67) gives

$$t_0/l_0 = \left(\frac{2(3N + t_k)}{\sqrt{3}}\right) \frac{1}{l_0} \leq N \leq N_{\text{max}} - 1$$

(68)

Again, Eq. (64) requires $1 - 2\sqrt{3} / (3N) t_0/l_0 [1 - 1 - \sqrt{3} t_0/l_0] \geq 0$. In conjunction with Eqs. (63) and (65), the inequality produces N_{min}, the lower bound of N:

$$N_{\text{min}} = \frac{c e}{\left[n - n \sqrt{1 - \frac{t_0}{l_0} (1 - \frac{1}{2\sqrt{3}} t_0)}\right] \frac{1}{2}}$$

(69)

Also, when $N_{\text{min}} = 0$, Eq. (69) provides $N_{\text{min}} = 1$.

Here, the H–S upper bounds is again employed to analyze the effective elastic moduli and thermal conductivity of the Kagome lattice sub-structure. Defining the in-plane Young’s, shear and bulk moduli and thermal conductivity of the Kagome sub-structure as E_k, G_k, k_k and σ_k, respectively, we obtain:

$$\frac{E_k}{E_o} = A_k = \frac{\phi_k}{3 - 2\phi_k}$$

(70)

$$k_k = B_k = \frac{\phi_k G_k/k_k}{1 - \phi_k + G_k/k_k}$$

(71)

$$G_k = C_k = \frac{1}{2 (1 + \phi_k) (1 - \phi_k) (1 + 2G_k/k_k) + 1}$$

(72)

$$\frac{\sigma_k}{\sigma_o} = \frac{\phi_k}{2 - \phi_k}$$

(73)

where

$$\phi_k = \sqrt{3} t_k/l_k - \left(t_k/l_k\right) \left(1 - \frac{1}{2\sqrt{3}}\right)$$

(74)
is the relative density of the Kagome sub-structure. Denoting the effective Poisson’s ratio of the Kagome sub-structure by \(\nu_k \), employing \(G_k = E_k/[2(1 + \nu_k)] \) and combining Eqs. (70) and (72) give

\[
\nu_k = \frac{1}{2} \frac{A_k}{C_k} - 1 \tag{75}
\]

Thus,

\[
\frac{G_k}{G_k} = \frac{E_k}{E_k}/[2(1 + \nu_k)] = \frac{1 - \nu_k}{1 + \nu_k} \quad \text{and} \quad \frac{C_k}{A_k} = 1 \tag{76}
\]

Again, defining the in-plane Young’s, shear and bulk moduli and thermal conductivity of the MHH with Kagome sub-structure as \(E_k, G_k, k_k \) and \(\sigma_k \), we have:

\[
\frac{E_k}{E_0} = A_M = \left\{ \begin{array}{ll} \frac{3}{2} \phi_M^2 \left(\phi_M \right)^{1/\phi_M - 1} & \phi_M \leq 0.5 \\ \frac{3}{2} \phi_M^2 \left(\phi_M \right)^{1/\phi_M - 1} & \phi_M > 0.5 \end{array} \right. \tag{77}
\]

\[
\frac{k_k}{k_0} = B_M = \left(1 - \phi_M \right) + \frac{G_k}{k_k} \left(1 + 2 \phi_M \right) \tag{78}
\]

\[
\frac{\sigma_k}{\sigma_0} = \frac{\phi_M}{2 - \phi_M} \tag{79}
\]

where,

\[
\phi_M = \frac{2}{\sqrt{3}} \frac{t_1}{t_0} \left(\frac{t_1}{t_0} \right)^2 \left(\frac{t_1}{t_0} \leq \sqrt{3} \right) \tag{80}
\]
Combining Eqs. (19), (70) and (77) gives the relative Young’s modulus E_M/E_O:

$$
\frac{E_M}{E_O} = \frac{A_M A_k}{A_O}
$$

(82)

Similarly, from Eqs. (20), (71) and (78) we can get the relative bulk modulus k_M/k_O:

$$
\frac{k_M}{k_O} = \frac{B_O B_k}{B_O}
$$

(83)

And from Eqs. (21), (70) and (79) we obtain the relative shear modulus G_M/G_O:

$$
\frac{G_M}{G_O} = \frac{A_O B_O A_k}{2 B_O - A_M (1 - \nu_k)}
$$

(84)

Finally, from Eqs. (23), (50) and (57), we find the relative thermal conductivity σ_M/σ_O:

$$
\frac{\sigma_M}{\sigma_O} = \frac{\phi_M \phi_k (2 - \phi_O)}{\phi_0 (2 - \phi_M) (2 - \phi_O)}
$$

(85)

5.2. Effects of N on the relative elastic moduli and thermal conductivity of the MHH with Kagome sub-structure

In this section, we consider the third example with parameters $n = 20$, $\lambda = 1/n = 0.05$, $t_0/l_0 = 0.01, 0.05, 0.1, 0.2$ and 0.3. Then, Eq. (66) provides $N_{\text{max}} = 10$ and Eq. (69) the lower bound N_{min} for each t_0/l_0. The results of the relative elastic moduli E_M/E_O, G_M/G_O, k_M/k_O and the relative thermal conductivity σ_M/σ_O vs N are shown in Figs. 14–17, respectively.

Comparing Figs. 14 and 15 with Figs. 9 and 10, we can see that Young’s and shear moduli of the MHH with Kagome sub-structure are similar to those of the MHH with triangular sub-structure, so the discussion can be referred to the Section 4.

However, it is worth to say that, different from the MHH with hexagonal and triangular sub-structures, the relative bulk modulus k_M/k_O and the relative thermal conductivity σ_M/σ_O of the MHH with Kagome sub-structure become greater than one with the increase of t_0/l_0 (Figs. 16 and 17). This is to say, when t_0/l_0 is great enough, the effective bulk modulus and thermal conductivity of the MHH with Kagome sub-structure could be beyond those of the ORHH structures.

6. Comparisons of hexagonal, triangular and Kagome sub-structures

Comparing the examples discussed in Sections 3–5, it is apparent that for an ORHH, the in-plane stiffness enhancements of the MHH with triangular and Kagome sub-structures could be much greater than that with the hexagonal sub-structure. This is illustrated by the fourth examples with the parameters $t_0/l_0 = 0.1$ and $\lambda = 1/20$ and the result is plotted in Fig. 18, in which the relative Young’s modulus E_M/E_O versus N for the MHH with the above three sub-structures are reported. Interestingly, we find that the relative Young’s moduli of the MHH with triangular and Kagome sub-structures increase as N increases in contrast to that with hexagonal sub-structure. And more, Young’s modulus of the MHH with Kagome sub-structure is improved most with respect to the ORHH.
For the comparisons on bulk modulus and thermal conductivity of the three MHHs, the parameters $t_0/l_0 = 0.3$ and $k = 1/20$ are employed, and the results are depicted in Figs. 19 and 20, respectively. From the two figures, we can say that the MHH with Kagome sub-structure is the optimal structure to design the bulk modulus and thermal conductivity of the multifunctional regular hexagonal honeycomb.

7. Conclusions

In this paper, we have studied the in-plane elastic and transport properties of the MHH, which is formed by replacing the ORHH solid cell walls with three types of equal-mass isotropic honeycomb sub-structures. The analytical results show that with the hexagonal sub-structure it is difficult to greatly increase Young’s and shear moduli of the MHH. Whereas, triangular and Kagome sub-structures share a similar improvement on the MHH’s Young’s and shear moduli, and the improvement is substantial, from one order to three orders of magnitude depending on the cell-wall thickness-to-length ratio t_0/l_0 of the ORHH. Meanwhile, if t_0/l_0 is great enough, the effective bulk modulus and transport ability of the MHH with Kagome sub-structure can exceed those of the ORHH structure. These interesting findings show a possibility to design hierarchical honeycombs for multifunctional applications, e.g., the metallic MHH can be used as the core of light weight sandwich panels in electronic packages and airborne devices, where both the structural and thermal characteristics are desirable.

Acknowledgements

The research related to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement nu [279985] (ERC Starting Grant BIHSNAM and ERC Proof of Concept REPLICA, PI NMP on “Bio-inspired hierarchical super nanomaterials”). Q. Chen is supported by the Scientific Research Starting Fund from Southeast University. Y. Sun appreciates the China Scholarship Council (CSC) for the financial supports.

Appendix A. MHH cell wall with hexagonal sub-structures

Fig. A.1 shows the representative cell walls of the MHH with regular hexagonal sub-structures in Fig. 3b. The mass of the sub-structure is distributed uniformly among the half-thickness hexagonal sub-structure cells within the blue hexagon.

Appendix B. MHH cell wall with triangular sub-structures

Fig. B.1 schematically shows the cell wall of the MHH with triangular sub-structures (Fig. 8b). The hierarchical length ratio is $\lambda = 1/n$. M is the total number of the half-thickness triangular cells in one sub-structure cell wall. It is easily to get the following relation between M, N and n:

$$N = 1 : M = 2(2n + 1) + 2 \frac{n}{3}(n - 1)$$

$$N = 2 : M = 2(2n + 2 - 1 - 1 - 2) + 2 \frac{n}{3}(n - 2)$$

$$N = 3 : M = 2(2n + 3 - 1 - 1 - 2 - 3) + 2 \frac{n}{3}(n - 3)$$

Fig. 20. The relative thermal conductivity σ_M/σ_O vs N for different sub-structures with the same parameters $t_0/l_0 = 0.3$ and $\lambda = 1/20$.

From Fig. A.1 we can see that the number of the half-thickness hexagonal sub-structure cells M can be determined by n and N as the following form:

$$M = 2N[n + (n + 1)] + \frac{1}{6}(2n) - 4A_N$$

$$= 2N(2n + 1) + \frac{n}{3} - 4A_N$$

(A.1)

in which $A_1 = 1/6$ and $A_2 = 1$.

Here, A_N depends on N, we find it generally expressed as:

$$A_N = \frac{(2N + 1)(N - 1) + 1}{6} (N \geq 1)$$

(A.2)
Then, by inductive method, we find:

\[M = 2(2n \times N - B_n) + \frac{2}{3}(n - N)(1 \leq N \leq n) \]
(B.2)

with

\[B_n = N^2 \]
(B.3)

Substituting Eq. (B.3) into Eq. (B.2) gives:

\[M = 2N(2n - N) + \frac{2}{3}(n - N)(1 \leq N \leq n) \]
(B.4)

Appendix C. MHH cell wall with Kagome sub-structures

Fig. C.1 schematically shows the cell wall of the MHH with Kagome sub-structures. The hierarchical length ratio is \(\lambda = 1/n \). \(M \) is the total number of the triangular cells included in one Kagome substructure cell wall. Then, the relationship between \(M \), \(N \) and \(n \) are expressed as:

\[N = 1 : M = 2[(n - 1) - 0] \]
\[N = 2 : M = 2[2(n - 1) - 2] \]
\[N = 3 : M = 2[3(n - 1) - 2 - 4] \]
(C.1)

Likewise, we find:

\[M = 2[N(n - 1) - C_n](1 \leq N \leq n) \]
(C.2)

with

\[C_n = N(N - 1) \]
(C.3)

Substituting Eq. (C.3) into Eq. (C.2) gives:

\[M = 2N(n - N)(1 \leq N \leq n) \]
(C.4)

References

Y. Sun et al. / Composite Structures 107 (2014) 698–710

