Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres

Shangchao Lin1,2,*, Seunghwa Ryu1,3,*, Olena Tokareva1,4,*, Greta Gronau1,5, Matthew M. Jacobsen6, Wenwen Huang4, Daniel J. Rizzo7, David Li6, Cristian Staii7, Nicola M. Pugno8,9,10, Joyce Y. Wong6, David L. Kaplan4 & Markus J. Buehler1

Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate *de novo* materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young’s modulus. This integrated approach provides a general path towards *de novo* functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.
Natural protein biomaterials such as silk have been the subject of intensive research due to the extraordinary properties with versatile potential applications\(^1\). Among them, spider silks possess exceptional mechanical properties with toughness comparable to Kevlar\(^3\) and strength comparable to steel, yet by weight is six times lighter\(^8\). Silks, due to biocompatibility\(^9\) and biodegradability\(^10\), are useful protein-based materials for biomedical applications such as wound sutures\(^3\), artificial nerve guides\(^8\), tissue regeneration\(^9\) and gene\(^1\) or drug delivery\(^12\). Despite the simple amino acid building blocks for silks proteins, spiders and silkworms produce silks with remarkable mechanical and adhesive properties by engineering nanoscale protein aggregate morphologies via multiple stages of spinning, relying at its foundation on self-assembly and shear flow-induced focusing along their microchannel-like spinning ducts. Silk protein sequence alterations, together with fibre-processing parameters, allow for a huge design space for new polymeric materials. The molecular-level microstructure formation of polymer aggregates via self-assembly has been recognized as a very important process that determines the material properties. To fully harness these processes to generate defined material features, there have been extensive efforts\(^13,14\) to artificially synthesize the silk fibre with regenerative\(^15\) and synthetic (or recombinant)\(^16-18\) silks. Using recombinant silk is also more practical and cost effective than harvesting silk materials from spider farms and, therefore, has great potential for large-scale manufacturing. Yet, the design and implementation of synthetic imitations have been hindered by incomplete knowledge about the interplay between protein structure, fibre processing and fibre properties. These limitations have resulted in an inability to fully recapitulate the suite of remarkable mechanical properties of silk.

Synthetic silk protein sequences of this work contain three major building blocks named ‘A’ (poly(alanine) containing, hydrophobic domain), ‘B’ (GGX (X=R, L, Y or Q) rich, hydrophilic domain) and ‘H’ (hexahistidine fusion tag, introduced for facile purification, hydrophilic domain same as ‘B’). ‘A’ and ‘B’ represent an abstraction of the natural silk protein sequence in which hydrophobic and hydrophilic domains are arranged repetitively into a multiblock copolymer. The amino-acid sequence in each domain is also identical to the native sequence in the major amputile spidroin (MaSp1, Accession Number: P19837.3) of Nephila clavipes\(^19,20\). Specifically, the sequences (Supplementary Table 1) for the ‘A’ and ‘B’ domains are GAGAAAAAGGAGTS and QQGYGGLGSOGSGRRGLGQTTS, respectively. For the ‘A’ domain, the hydrophobic alanine (A) amino acids are responsible for the self-assembly of proteins into aggregates via β-sheet stacking, whereas the glycine (G) amino acids facilitate the hydrogen bonding between β-sheets. As a result, the hydrophobic ‘A’ domains form stiff and strong β-sheet crystals, whereas the hydrophilic ‘B’ domains form disorganized and extensible amorphous regions. Theoretical models for describing the self-assembled morphologies of block copolymers are still limited to very simple copolymer structures\(^21\), in which Flory–Huggins parameters (\(\chi_{AB}\)) are used to quantify the degree of incompatibility between the hydrophobic and the hydrophilic domains. For example, the self-consistent mean-field theory can only predict phase diagrams of pure diblock or triblock copolymers in bulk or with solvents\(^22\), but not the molecular structures in detail\(^23\). On the other hand, our recent atomistic simulations revealed various structural details and mechanics of the crystalline and amorphous regions of the silk protein in aqueous environments\(^24-26\). However, the atomistic simulations are not efficient enough to study the self-assembly process of a large number of proteins or polymers in the mesoscale. Therefore, scalable computational modelling approaches are required to study more complicated protein-like multiblock copolymers, in particular, protein sequences with ~20 different amino-acid building blocks in aqueous environments.

With the above in mind, in this paper, we develop a coarse-grained description of silk proteins as multiblock copolymers based on the mesoscopic dissipative particle dynamics (DPD) simulation\(^27,28\) (see Methods), and apply the model to reveal the critical processing conditions and design parameters that control silk fibre assembly. We also validate the model against silk protein biosynthesis and characterization, and syringe needle fibre spinning and tensile testing (see Methods). This integrated modelling and experimental framework is illustrated in Fig. 1a. We reveal the structural evolution of the silk protein solution under shear flow and study how the ‘A’–‘B’ domain ratio and the protein molecular weight (polymer chain length) affect the fibre formation process. Our simulation results and polymer network analysis suggest that intermediate ‘A’–‘B’ domain ratio leads to homogeneous and well-connected polymer solution, which is the key during the fibre-spinning process. We also reveal that, in addition to the β-sheet crystal content, longer chains are crucial for the formation of robust fibres. The shear flow further enhances the alignment of longer polymers and the size of the β-sheet crystal, which leads to gelation and fibre assembly\(^29\).

Networks formed by shorter polymers are easily disrupted by the shear flow. To obtain a general polymer design principle, we extend beyond the classical polymer theory, which describes only homogeneous polymer aggregates before spinning with insights from the percolation network model, which also describes heterogeneous polymer networks after spinning. This molecular-level design principle for mechanically robust silk fibres is finally realized in our spinning and nanoindentation experiments.

Results

Effects of domain ratio and shear flow. To examine the effect of hydrophobic–hydrophilic (‘A’–‘B’) domain ratios on fibre formation, three short peptide sequences with similar polymer chain length (molecular weight) are considered: HA\(_2\)B, H(AB)\(_2\), and HAB\(_3\) (Fig. 1b–d), with different domain ratios 3:1, 1:1 and 1:3, respectively. The ‘A’ domain is modelled using five hydrophobic ‘a’ beads and the ‘B’ domain is modelled using seven hydrophilic ‘b’ beads. DPD simulation results on the aqueous solutions of HAB\(_3\), H(AB)\(_2\) and HA\(_2\)B right after equilibration (before shear flow) is shown in Fig. 1b–d, middle panel. We expect that the electrostatic interactions between silk proteins will be relatively weak here, because the degree of protonation or deprotonation is quite low due to the use of organic solvents rather than water. Therefore, electrostatic interactions are currently neglected in the DPD model and such effect will be considered in future studies to better mimic the ionic aqueous environment in the natural spider silk-spinning process\(^30\) in which the silk protein should be modelled as a polyelectrolyte. Starting with randomized polymer solutions, the equilibration of the system results in the formation of spherical polymer micelle structures in which hydrophobic ‘a’ beads in the ‘A’ domain aggregate (or cross-linked via hydrogen bonding) into multiple crystalline clusters (β-sheet crystals) surrounded by the corona composed of hydrophilic ‘b’ beads extended towards the aqueous environment. The size of the micelles increases as the ‘A’–‘B’ domain ratio increases and follows the trend: HA\(_2\)B > H(AB)\(_2\) > HAB\(_3\), due to stronger hydrophobic attractions among the larger amounts of ‘a’ beads. This computational observation is in good agreement with scanning electron microscopy (SEM) images comparing the three sequences synthesized and purified, as well as the Fourier transform infrared (FTIR) spectroscopy measurements that...
provide the percentages of protein secondary-structure contents (see Supplementary Methods and Supplementary Fig. 3). The observed trend that block copolymers with larger hydrophobic–hydrophilic domain ratios form larger aggregates is in good agreement with other theoretical and experimental studies on self-assembly of block copolymers or in general, amphiphilic molecules in aqueous solutions.

Under shear flow, polymer chains extend along the flow stream and the size of micelles increases by merging multiple micelles as the ‘a’ beads cluster further together (Fig. 1b–d, bottom), in good agreement with earlier theoretical studies on block copolymer micelles, which elongate and aggregate under shear flow. The aggregate elongation or spherical-to-cylindrical transition under shear flow is not significant for the short sequences studied here, including HAB₃, H(AB)₂ and HA₃B. Such transition is more obvious for longer sequences (discussed later). The change of micelle size in the HAB₃ solution after shearing is modest because each micelle is surrounded by a dense corona of longer hydrophilic chains (Fig. 1b, bottom). In contrast, in the case of the HA₃B solution, the micelles are lumped into globular structures owing to their larger hydrophobic cores and less steric repulsion from the smaller hydrophilic corona (Fig. 1d, bottom). Note that water beads are not shown for clarity and the scale bar applies for all snapshots. Colour code: red beads—hydrophobic ‘a’ beads in the ‘A’ domain, blue lines—hydrophilic ‘b’ beads in the ‘B’ domain and green lines—hydrophilic ‘b’ beads in the ‘H’ domain.

Figure 1 | Integrated fibre design framework and DPD simulation snapshots. (a) Illustration of the integrated framework that synergistically combines scalable modelling using coarse-graining, genetic silk protein synthesis and shear flow spinning process. Mesoscopic DPD simulation snapshots of the recombinant short silk peptides: (b) HAB₃, (c) H(AB)₂ and (d) HA₃B, with coarse-grained representations (top panel), snapshots after equilibration (middle panel) and after shear flow (bottom panel). Hydrophobic ‘a’ beads form aggregates (clusters composed of cross-linked β-crystals via hydrogen bonds) and hydrophilic ‘b’ beads form corona structures around the cluster and physical links between two clusters. The HAB₃ solution exhibits small micellar aggregates (< 5 nm in diameter), with a minor increase in micelle size after shear. In contrast, the HA₃B solution exhibits large micellar aggregates (> 10 nm in diameter) with enlarged inhomogeneous globular aggregates after shear (15 ~ 20 nm in diameter), which leads to the clogging of the spinning channel. The H(AB)₂ solution exhibits middle-sized homogeneous aggregates (~ 5 nm in diameter) with enlarged aggregates after shear (~ 10 nm in diameter).
is, the number of polymer chains through which two nodes connect. The node–bridge diagrams in Fig. 2a show that only the H(AB)2 sequence enables weak but connected polymer networks both before and after shear flow, compared with the HAB3 and HAB3 sequences. Time evolution of the network properties (Fig. 2b) show that the median number of ‘a’ beads per node (as a measure of the aggregate size) is larger for higher ‘A’–‘B’ domain ratios, and that the aggregate size increases significantly after shear flow due to flow-focused concentration. Note that the median value is used instead of the mean value because the cluster size distribution could be highly skewed. In addition, the total number of bridges formed remains zero for high and low ‘A’–‘B’ domain ratios (Fig. 2c), which suggests the advantage of the intermediate domain ratio to allow connected polymer networks and its potential for fibre formation.

The above findings suggest that the delicate balance between the ‘A’ and ‘B’ domains are critical for the polymer network connectivity: for large ‘A’–‘B’ domain ratios, there are not enough ‘B’ domains to form the bridges, whereas for small ‘A’–‘B’ domain ratios, the cluster is too small and fragile to maintain the bridges between them. Therefore, the intermediate ‘A’–‘B’ domain ratio examined here (1:1 for H(AB)2) provides the optimal combination of robust cluster formation and network connectivity. Interestingly, this optimal 1:1 ratio matches the hydrophobic/hydrophilic domain ratio in the native MaSp1 sequence of Nephila clavipes19,22, suggesting an evolutionary principle to adapt certain material properties. For different spider species that already possess close-to-optimal domain ratios, previous literature implies that the major ampullate (dragline) silk mechanical properties could be greatly affected by the small difference in the alanine fractions (one of the major building blocks of the ‘A’ domain here) of the corresponding silk proteins35. For example, the alanine fraction of Nephila clavipes dragline silk is 21.1–27.5%, higher than the alanine fraction of 17.6% for the Araneus diadematus dragline silk, which could lead to the higher Young’s modulus of the former silk (8–14 GPa) compared with the latter one (~ 4 GPa, ref. 35). Therefore, the polymer domain ratio here also has a strong influence on the structure and mechanics of silk from different spider species. A positive correlation may exist between the alanine fractions in the silk protein and the Young’s modulus of silk materials. Other mechanical properties, such as ultimate tensile strength/strain and toughness, will depend on additional factors of the protein sequence, including the amorphous structure of the protein and the resulting protein extensibility.

Effects of sequence length and shear flow. Inspired by the fact that long chain, high molecular weight regenerative silk fibroins have been used as a good additive to fabricate silk fibres34, we then pursued new design improvements using much longer protein sequences based on the model-predicted H(AB)2 sequence with the optimal ‘A’–‘B’ domain ratio. Towards this effort, we carried out a set of new simulations on the H(AB)n sequence.

![Figure 2](image-url) **Figure 2** | Polymer network structures for the HAB3, H(AB)2 and HAB3 sequences. (a) Polymer network analysis leads to the node–bridge diagram of the three peptide sequences before and after shear flow (all correspond to the simulation snapshots in Fig. 1). Only the H(AB)2 sequence exhibit weak network connectivity, whereas the other two sequences do not form any network. Time evolution of the simulated polymer network properties during equilibration and shear flow: (b) median number of ‘a’ beads per node as a measure of the aggregate size and (c) the total number of bridges as a measure of the connectivity. The median size of each aggregate or cluster (b) is increased during the shear flow and the trend is consistent with Fig. 1, while the total number of bridges (c) is reduced for H(AB)2 during the shear flow and remains zero for both HAB3 and HAB3 sequences. These results clearly show the advantage of the H(AB)2 sequence with the intermediate ‘A’–‘B’ domain ratio to form connected polymer networks (highlighted by the red rectangle).
sequences. Although the simulations and experiments here focus on shorter peptides with \(n \leq 12 \) as a proof of concept, they represent the major structural modules of native silk proteins for self-assembly and the findings here should hold their generality. We are also in the progress of expressing and synthesizing longer recombinant silk proteins with \(n \) values from 20 to 100.

The simulated equilibrium structures of the different \(H(AB)_n \) sequences exhibit homogeneously distributed clusters of similar but slightly increased sizes for longer chains (Fig. 3c,d) for comparisons between \(n = 4 \) and 12). This finding is consistent with experimental atomic force microscopic (AFM) images of the protein solution (see Supplementary Methods and Supplementary Fig. 4a). However, the network node–bridge diagram of longer chains shows more densely distributed bridges and greatly enhanced the total number of bridges compared with shorter ones (Fig. 3c,d, bottom). Furthermore, for longer chains, we find more multi-connected bridges (thicker black lines in the diagram). The different sequences also show distinct configuration change after the shear flow (Fig. 3e,f for comparison between \(n = 4 \) and 12). Aggregate elongation or spherical-to-cylindrical transition under shear flow is very significant for the longer sequences here (\(n \geq 4 \)), consistent with previous simulation results32. As the polymer chains stretch along the fibre axis (x axis) under shear flow, the cross-linked \(\beta \)-sheet crystals (composed of the ‘A’ domains) grow in size until it reaches the steady state for which the overall crystal size increases significantly. This is also consistent with experimental FTIR-derived percentages of protein secondary-structure contents for the protein aggregates (see Supplementary Methods and Supplementary Fig. 4b), in which the \(\beta \)-sheet content increases by threefold after fibre spinning. Interestingly, from node–bridge diagrams, we find that the number of multi-connected bridges is greatly enhanced after shear flow, but only longer sequences exhibit homogeneous and continuous networks along the x axis while shorter sequences exhibit only isolated and discontinuous networks (Fig. 3e,f, bottom).

Our simulation well explains, for the first time at the molecular level, the previously observed monotonic increasing trend in fibre mechanics as the recombinant silk protein chain becomes longer, even up to 96 repeated units (molecular weight = 285 kDa) without plateau37. Time evolutions of the polymer network properties (Fig. 4a,b) confirm the observed changes of the median cluster size and total number of bridges of the \(H(AB)_n \) sequences during shear flow and subsequent mechanical tensile testing. As discussed earlier, the cluster size shows a weak dependence on the peptide length because it is determined primarily by the composition of the hydrophobic ‘A’ domains, although shear flow can greatly enlarge the cluster size. The total number of bridges shows a significant dependence on the polymer chain length, however, the total number of bridges is not enhanced at all during shear flow, which is probably due to the flow-induced perturbation and disruption of the network in all directions (isotropic). In analogy to the percolation network, we also computed the distribution of the number of connected nodes for \(H(AB)_4 \) and \(H(AB)_{12} \) sequences (Fig. 4d). Two nodes with only single connection between them can be considered as dangling bonds, which do not contribute to the materials strength because they are not stretched under tension. The fraction of such wasted connection is zero for the longer \(H(AB)_{12} \) sequence, suggesting the advantage of longer chain length in spinning robust silk fibres.

To further understand the effect of shear flow on fibre formation, we introduce the measure of network conductance that characterizes the degree of anisotropic polymer alignment and network integrity (percolation) along the x axis (see Methods). Although the total number of bridges is not enhanced during shear flow (Fig. 4b), the network conductance is greatly increased (Fig. 3a,b). The molecular weights of different sequences also range from 11,654 to 43,731 Da for \(n = 2 \) to 12. In comparison, various MaSp sequences have been shown to contain short peptide motifs that are repeated multiple times with various combinations to form repetitive structural modules, which range in size for the core sequence from 19 to 46 (ref. 36). For example, the native MaSp1 sequence possesses short peptide motifs (accession number: P19837.3) with 36). For example, the native MaSp1 sequence possesses short peptide motifs (accession number: P19837.3) with 19,22). The messenger RNA sizes for MaSp1 and MaSp2 were shown to be \(~ 12.5 \) and 10.5 kb, respectively, generating proteins around 350 kDa that contains also the carboxy (C)/amino (N)-terminals and the spacer groups. Although the simulations and
increased during shear flow (Fig. 4c). This reveals the most important influence of shear flow in helping align the originally isotropic polymer chains and assemble them into anisotropic structures with good network connections. Interestingly, only the conductance of longer protein sequences \((n = 8\) and 12\) are enhanced during shear flow, while the shorter ones drop to zero due to flow-induced disruption only along the \(x\) axis. This orientational effect, as a result of the shear flow, determines the critical polymer length \((n \geq 8)\) beyond which silk formation becomes possible. A theoretical model based on the network percolation theory is used to explain such critical polymer length, as well as the optimal ‘A’–‘B’ domain ratio observed above (see Supplementary Discussion). More importantly, shearing-induced polymer alignments need to overcome flow-induced network perturbations to sustain structural integrity along the \(x\) axis. Therefore, longer protein sequences are better candidates due to their pre-existing multiply connected network even before shear flow.

Anisotropic polymer network conductance and fibre mechanics. To understand the effect of polymer network microstructures on mechanical properties of the silk fibres, we performed tensile loading simulations on the network structures formed before and after shear flow (Fig. 5a,b). As expected from the enhanced number of bridges and conductance for longer sequences, the Young’s modulus of the network increases by about two times for longer sequences \((n = 8\) and 12\), but drops to zero for shorter sequences \((n = 2\) and 4\). The network microstructure evolution during tensile tests is shown in Fig. 5c for \(H(AB)_{12}\) sequences, which exhibits three deformation steps: extension of individual polymer chains and bridges (soft hydrophilic ‘B’ domains forming amorphous phases) between clusters (stiff hydrophobic ‘A’ domains forming cross-linked \(\beta\)-sheet crystals), the escape and breakage of polymer chains from the cluster and sequential unfolding of polymer chains in the cluster. Our simulation results confirm the proposed deformation mechanism from the experimental tensile loading test of silk fibre accompanied by X-ray scattering\(^{38}\).

In support of our modelling results, we carried out a series of experimental studies that focused on the \(H(AB)_{12}\) sequences (see Supplementary Methods and Supplementary Fig. 5). SEM images of \(H(AB)_{12}\) in aqueous solutions show fibre-like structures and nano-fibre (within the film) features for self-assembled \(H(AB)_{12}\) polymers (Supplementary Fig. 5a), suggesting a high possibility of them forming silk fibres in a shear flow device. The original dried \(H(AB)_{12}\) film Young’s modulus was characterized using AFM nanoindentation. The resulting Young’s modulus map and
distribution show that the original H(AB)_{12} films possess a Young’s modulus of only 20–40 MPa (Supplementary Fig. 5b). Successful spinning of macroscopic fibres (>1 cm long) using the H(AB)_{12} sequence dissolved in two different solvents (aqueous LiBr solution and hexafluoroisopropanol (HFIP) with formic acid) is confirmed by both bright-field optical microscope and SEM images (Fig. 6). The resulting concentrated silk solution was dialysed extensively against water to remove unnecessary LiBr ions (with a dilution factor of 1 to 2,000), which could be close to the natural spider silk-spinning condition (ionic environment with Na\(^+\) and K\(^+\), ref. 30) and is consistent with the DPD modelling framework. The syringe needle fibre-spinning method is used here. As shown in Fig. 6a, H(AB)_{12} polymers dissolved in HFIP can be spun into fibres that form bundles in the 2-propanol coagulation bath, consistent with our model predictions for longer chain polymers. The bundle delaminates and super-contracts after rehydrating by water, which results in individually separated fibres with relatively uniform diameters (\(\sim\)30 nm) under SEM (Fig. 6b). The hierarchical structure of the fibre bundle after 2-propanol treatment (dried without hydration) was probed in a series of SEM images (Supplementary Fig. 6), showing the spherical H(AB)_{12} protein aggregates as the fundamental building block of the fibre bundle, similar to our model-predicted morphology in Fig. 3d. In addition, H(AB)_{12} polymers dissolved in aqueous LiBr solution form thinner individual fibres (\(\sim\)3 \(\mu\)m for dried fibres) without bundling.
Figure 6 | Experimental validations for fibre spinning and mechanical properties. Syringe needle spinning of recombinant silk fibres with the H(AB)_{12} polymer dissolved in HFIP: (a) bright-field microscopic images of spun fibres in bundle in the coagulation bath and (b) SEM images of the separated fibre after rehydration, showing a relatively uniform fibre diameter of ~8 µm. In addition, H(AB)_{12} polymer dissolved in LiBr aqueous solution can also form thinner silk fibres without bundling: (c) bright-field microscopic images in the coagulation bath and (d) SEM images of the dried fibre showing a diameter of ~3 µm. Mechanical properties of syringe needle spun silk fibres using the H(AB)_{12} sequence dissolved in two different solvents (HFIP and LiBr aqueous solution). The effect of hydration on fibre Young's modulus is studied by comparing air-dried and rehydrated fibres. (e) The Young's modulus maps (top) and the corresponding Young's modulus distributions (bottom) of the four different types of fibres were obtained using the similar nanoindentation measurement as in Supplementary Fig. 5b. The red colour in the Young's modulus map indicates outliers with extremely high Young's modulus values. (f) Averaged fibre Young's modulus values over the distribution plots in e, showing standard deviations. (g) Representative stress-strain curve from mechanical tensile testing on various silk fibre samples, confirming high fibre robustness and Young's modulus.
on the other hand, shorter sequences such as H(AB)_2 only form disordered films when dissolved in both solvents (Supplementary Fig. 7), which is in good agreement with our model predictions about the effect of polymer chain length on fibre formation.

The mechanical properties of four different types of spun fibres (with two solvent, and for air dried or rehydrated cases) were characterized using AFM nanoindentation (Fig. 6e). The rehydrated fibres will fill the purpose of testing the effect of hydration on fibre mechanics. Overall, the spun H(AB)_12 fibres exhibit a greatly enhanced Young’s modulus modulus of 1~8 GPa (Fig. 6f), with two orders of magnitude enhancement over the original dried films (Supplementary Fig. 5 (b)). More excitingly, the spun fibres here are very close to natural spider silk fibres with an initial Young’s modulus of 3~20 GPa, depending on spider species^{36,39}. Mechanical tensile testing along the fibre axis also confirms their robustness with a tensile strength of ~23 MPa, a Young’s modulus of ~500 MPa and an ultimate strain of 6% (Fig. 6g). The fibre tensile testing results are not comparable with the nanoindentation results due to the fact that the tensile loading was introduced on fibre bundles (>100 μm in diameter) instead of individual fibres (<10 μm in diameter), for which individual fibre sliding along the pulling direction would diminish the ultimate fibre mechanical performance. These experimental findings agree very well with the model-predicted enhancement in the polymer network Young’s modulus modulus after shear flow treatment (Fig. 5), confirming that flow-focusing and shearing in the spinning process can indeed facilitate the assembly of silk fibres by aligning individual polymer chains.

Discussion

On the basis of the simulation results for the H(AB)_{n} sequences, we summarize the correlation between various steady-state polymer network and mechanical properties with the number of repeated polymer units n in Fig. 7a. In general, all polymer networks and mechanical properties (aggregate size, network connectivity, network conductance and Young’s modulus) correlate well with the value of n, except that the network conductance and both mechanical properties remains zero for shorter chain lengths (n = 2 and 4) after shear flow due to destruction of the network along only the fibre axis. More importantly, we summarize the correlation between total number of bridges and conductance with the resulting Young’s modulus in Fig. 7b. The total number of bridges correlates well with the Young’s modulus before shear flow, as predicted by classical polymer theory, but cannot explain the zero Young’s modulus for shorter chains (n = 2 and 4) after shear flow (Fig. 7b, top). This is because the total number of bridges does not represent the heterogeneity of the network connectivity and thus cannot capture the percolation of network. On the other hand, the network conductance not only explains the zero Young’s modulus for shorter chains (n = 2 and 4) after shear flow, but also exhibits perfect linear correlation with the Young’s modulus for all polymer chain lengths both before and after shear flow (Fig. 7b, bottom) because it measures the contribution from the bridges to the anisotropic silk Young’s modulus along the fibre axis. We can demonstrate the perfect correlation between the network conductance and the Young’s modulus by making an analogy between elastic spring network and resistance network (see Supplementary Discussion and Supplementary Fig. 8), extending

![Figure 7](https://example.com/figure7.png)

Figure 7 | Summary of modelling results and fibre design trends. (a) The effect of polymer chain length (measured by the number of repeated polymeric units, n) of the H(AB)_{n} sequences on simulated steady-state polymer network properties, and the corresponding Young’s modulus before and after shear flow. All three polymer network properties correlate well with the value of n, except that the network conductance remains zero for shorter chain length (n = 2 and 4) after shear flow due to shearing-induced perturbations. The Young’s modulus also correlates well with the value of n, except that, for n = 2 and 4, the mechanical values remain zero after shear flow, as a result of discontinuous networks with zero conductance. (b) Correlations between total number of bridges and conductance of the H(AB)_{n} sequences with simulated Young’s modulus. The total number of bridges correlates with the Young’s modulus before shear flow, but cannot explain the zero values for shorter chains (n = 2 and 4) after shear flow. On the other hand, the network conductance correlates perfectly well with the Young’s modulus both before and after shear flow, representing an extension of the classical polymer theory to heterogeneous fibres (see Supplementary Fig. 8).
the prediction of the classical polymer theory to heterogeneous fibres (recovering the limiting homogeneous case). As a result, we find that the network conductance instead of the total number of bridges is a good measure of network connectivity and thus is a key parameter for the predictive design of biological silk fibres, as demonstrated in Fig. 7b.

In conclusion, we provide a generic design principle for general multiblock copolymers \(\left(A_B, B_B, C \right) \): (i) intermediate polymer ratio \(\phi \) limits the network conductivity against shear-induced disruption. Although longer protein sequences are preferred, the solubility of the network is only maintained during the processing step. The reported shear conditions are crucial for creating the nanostructured network. The interplay between the gelation and solubility of the protein network is important to maintain solubility. Also, the networks of complex systems like spider silks should be modelled by considering the solubility of aggregates as a crucial factor.

Moreover, the structural network evolution of colloidal gels under shear flow is investigated using shear flow and a conductance of 1 (that is, the no bridge case possesses zero conductance) and a voltage of 1 is applied between the left and the right boundaries. A similar study was reported recently on the structural network evolution of colloidal gels under shear flow using Brownian dynamics simulations.

Methods

DPD simulation setup. All DPD simulations are carried out using the massively parallelized LAMMPS package. The simulations run in an elongated rectangular box \((60 \times 40 \times 40 R_0) \), where \(R_0 \approx 9.321 \AA \) is the characteristic physical length scale in the DPD model here) with a square cross-section and periodic boundary condition. The box length in the \(x \) direction (of flow) was chosen to be longer than a single extended chain to avoid artifacts from boundary conditions. The concentration is fixed to 20% volume fraction of coarse-grained polymer beads (each representing three amino acids) in all the cases to match the experimental spinning condition. The total number of beads in a system is 288,000 for studying the HAB, HA-B, and HA-B systems. Note that when comparing among the HAB\(_3\) (2, 4, 8, and 12) systems, the simulation box size was increased to 120\(\times 120 \times 120 \), respectively. Another 100,000 time steps without shear were used to equilibrate the system after shear flow (with larger aggregates and better network connectivity) is kinetically (not thermodynamically) stable, compared with the thermodynamically stable system (with smaller aggregates and fewer network connections) before shear. The energy barrier for the transition from the sheared state to a lower energy state would be higher for longer polymers, possibility due to the entanglement (gelation) of longer chains, which prevents immediate aggregate breakup during the relatively short equilibration run.

Polymer network analysis. We define that two ‘a’ beads in the ‘A’ domain are connected if they are located within 0.94 \(R_0 \), which is the averaged value of the first neighbour–neighbour distance 0.78 \(R_0 \) and the second neighbour–neighbour distance 1.10 \(R_0 \). A cluster, that is, the aggregated \(\beta \)-sheet crystals (cross-linked via hydrogen bonds), is defined as the group of connected ‘a’ beads. The depth-first search algorithm is used to find the cluster distribution efficiently. Once cluster distribution is obtained, each isolated cluster is defined as a ‘node’ whose coordinate is defined as the center of mass of ‘a’ beads in the cluster. Two nodes are defined to be connected with one ‘bridge’ if they are linked via the ‘B’ domain of at least one polymer chain. The number of connections between two nodes is defined as the multiplicity of the bridges, that is, the number of polymers through which the bridge nodes are linked. On the basis of the connectivity, we define a number of nodes connected simultaneously that is used to generate the node–bridge bridges. The conductance of the polymer network along the \(x \) axis is computed by drawing conceptual parallels with the resistance model of a typical electrical network, in which one bridge possesses a conductance of 1 (that is, the no bridge case possesses zero conductance) and a voltage of 1 is applied between the left and the right boundaries. A similar study was reported recently on the structural network evolution of colloidal gels under shear flow using Brownian dynamics simulations.

Mechanical property modelling. The mechanical property of the copolymer network before and after applying the shear flow is investigated using the standard tensile simulations along the \(x \) axis. The entire simulation box containing copolymers and the solvents is stretched in a \(x \) axis at a constant engineering strain rate of \(1 \times 10^{-6} s^{-1} \), while \(5 \times 10^{-8} s^{-1} \) and the \(z \) axis fixed. The simulation is performed until a steady state is achieved, by tracking root-mean-square-deviation \(\Delta x = \frac{1}{N} \sum_{i=1}^{N} (x_i - \langle x \rangle)^2 \), where \(x_i \) is the normal stress tensor value along the \(x \) axis, \(N \) is the strain along the \(x \) axis, and the Poisson’s ratio \(v = 0.5 \) for the constant volume constraint we enforced (incompressible). The effective stress can then be defined as \(\sigma_{eff} = \sigma_{xx} - \sigma_{yy} \) and the linear-elastic region (for \(\varepsilon_{xx} < 5\% \)) of the stress–strain curve is used for determining \(E_0 \). To remove the effect of solvents on \(E_0 \), we corrected the value of \(E_0 \) by dividing it with the ratio between the volume fraction of the entire simulation box and the effective volume occupied by the assembled copolymers. The DPD units for stress/pressure is \(k_B T R_0^2 \), which can be converted to the physical units of 5.11 MPa at 300 K. Note that the simulated system right after shear flow is already pre-stretched with \(\varepsilon_{xx} > 0 \) and therefore, a compressive simulation (using the same method as the tensile simulation, but with a fixed strain rate of \(-5 \times 10^{-6} s^{-1} \) is carried out by the system and determine the stress-free configuration at which \(\sigma_{eff} = 0 \). The stress-free system, with a reduced box dimension along the \(x \) axis (\(\approx 70\% \) of the original value), is then used as the new reference for the subsequent tensile simulation.

Silk block copolymer biosynthesis and characterization. Synthetic or recombinant multiblock copolymer-like silk peptides and proteins (HAB\(_3\), HA-B, and HA-B\(_{12}\)) sequences) were cloned, expressed and purified. The purity of expressed proteins was verified by SDS–PAGE and gel electrophoresis followed by Colloidal Blue staining. Protein identity was confirmed by mass-spectrometry ionization mass spectrometry (Tufts Core Chemistry Facility, Boston, MA). A small amount of the sample was used to assess the mechanical properties of all spider silk block copolymers. The experiments were performed using a Zeiss 55Uira System (Harvard University Center for Nanoscale Systems, Cambridge, MA). Each sample was sputter-coated with platinum with a HA024 sputter coater and mounted onto a sample holder with conductive tape. Lysophosphatidyls were dissolved in water to a final concentration of 1 mg ml\(^{-1}\) and dried on a silicon chip in a closed container at room temperature. Images were taken using Teneo and SE2 detectors at 1 kV.

Sample dried films (10 \(\mu m \) in thickness) were cast onto CaF\(_2\) substrate for the FTIR spectroscopy measurements. FTIR was carried out on a Jasco FT/IR-6200 spectrometer with a TGS detector. The absorbance spectra were obtained by averaging 128 scans with a resolution of 4.0 cm\(^{-1}\). The background spectra were collected under the same conditions and subtracted from the scan for each sample. We then carried out Fourier self-deconvolution over the amide I peaks on the
resulting FTIR spectra, using Opus 5.0 software with Lorentzian peak profile (half-bandwidth of 25 cm⁻¹ and a noise reduction factor of 0.3). This renders individual spectrum, which was used to obtain the composition (in percentage) of different protein secondary-structure contents by integrating the area of each deconvoluted curve, and then normalizing to the total area of the amide I peak. FTIR spectra and the corresponding Fourier self-deconvolution data for the H(AB)2 sequence and the H(AB)12 sequence before and after spin are shown in Supplementary Fig. 9. AFM imaging and force spectroscopy measurements were performed on an Asylum Research MFP-3D-Bio AFM (Asylum Research, an Oxford Instruments Company, Santa Barbara, CA). For imaging in fluids, 80 μl sample of 1% w/v was deposited as a drop on a silicon substrate and imaged. IgorPro 6.22A image analysis software was used to determine the heights of observed structures. The root-mean-square and the arithmetic average height (Ra) were determined using software to find differences between roughnesses of samples. Force curves were obtained with AFM in the contact mode. All imaging was performed in contact mode using Olympus silicon probes on a silicon surface. Cantilever specifications were the following: 160 μm in length, 40 μm in width, with a resonant frequency of 300 ± 50 kHz.

Syringe spinning of silk fibres and characterization. Syringe fibre spinning was carried out following the protocol in previous work using 15% w/v recombinant silk protein solutions, H(AB)2 and H(AB)12, synthesized in this work. The experimental setup is shown in Supplementary Fig. 10, with two different solvents (95% HFIP with 5% formic acid, or 9 M LiBr aqueous solution) being used for dissolving the proteins to fine-tune their aggregation. Silk protein solutions, H(AB)2 and H(AB)12, synthesized in this work. The Young’s modulus map and distribution were obtained by scanning a squared region of respective diameter measurements. Fibre diameters were determined using light microscopy under ×20 magnification.

References

2. Schafer, A., Vehoff, T., Glisovic, A. & Salditt, T. Spider silk softening by water (95% HFIP with 5% formic acid, or 9 M LiBr aqueous solution) being used for dissolving the proteins to fine-tune their aggregation. *Eur. Biophys. J.* 37, 197–204 (2008).
Acknowledgements

We acknowledge support from NIH (U01 EB014967) with additional support from NSF and ONR-PECASE. SEM experiments were performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation (NSF) under NSF award No. ECS-0335765. CNS is part of Harvard University. S.L. is additionally supported by the startup funding from the Energy & Materials Initiative at the Florida State University. S.R. is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013R1A1A010091). N.M.P. is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM no. 279985 on ‘Bio-Inspired hierarchical super-nanomaterials’, ERC PoC 2013-1 REPLICA2 no. 619448 on ‘Large-area replication of biological anti-adhesive nanosurfaces’, ERC PoC 2013-2 KNOTOUGH no. 632277 on ‘Super-tough knotted fibers’), by the European Commission under the Graphene Flagship (WP10 ‘Nanocomposites’, no. 604391) and by the Provincia Autonoma di Trento (‘Graphene Nanocomposites’, no. 5136/2012-242637 and reg. delib. no. 2266). We also acknowledge Nick Hall and Nicholas Rim at Boston University and Elise Spedden at Tufts University for help with the spinning process, fibre tensile testing and AFM nanoindentation study.

Author contributions

M.J.B., D.L.K. and J.Y.W. designed the research. S.L., S.R. and G.G. implemented the DPD model and analysis tools, carried out the simulations, collected the data and organized the manuscript. O.T. synthesized silk polymers, spun fibres (with M.M.J.) and collected the SEM data. W.H. collected the FTIR data. O.T., D.R. and C.S. collected the AFM and nanoindentation data. M.M.J. and D.L. performed the fibre tensile tests. N.M.P. and S.R. implemented and applied the network percolation model. All the authors contributed to the manuscript writing.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Lin, S. et al. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat. Commun. 6:6892 doi: 10.1038/ncomms7892 (2015).
Supplementary Figure 1 | (a) Force extension curves of 27 amino-acid-long worm like chain (WLC) and extensible WLC (EWLC) in comparison of our extensible freely jointed chain (EFJC). Here, WLC are plotted with experimentally obtained persistence length and EWLC is plotted with the chain stiffness obtained from atomistic simulation. Despite of simplicity, our model capture the overall force extension curve of the single peptide chain. (b) Hybrid DPD and HB potential for “a” bead attractive interaction. The short range modified harmonic potential and DPD potential are overlaid to have the minimum energy of $-2.85 \ k_B T$ at $r = 0.778 \ R_c$.
Supplementary Figure 2 | (a) Velocity and (b) temperature profile along y direction, after shear flow simulation with $\dot{\gamma}_{xy} = 0.01$ and $L_y = 40$. The velocity profile is obtained by averaging v_x of particles within 40 different sections with height 1, after steady state has been reached. Temperature values for each section are obtained by averaging temperature computed from thermal velocity, i.e., absolute velocity subtracted by translational velocity of each section. Except the boundary region, translational velocity profile changes linearly, achieving Couette flow condition. The temperature profile shows slight deviation from the expected value of 1.0, but the deviation is within 4%, and its effect on the assembly process is negligible.
Supplementary Figure 3 | Experimental SEM images of (a) HAB₃, (b) H(AB)₂, and (c) HA₃B peptide sequences in aqueous solutions after synthesis and purification. The HAB₃ sequence forms perforated films with a pore size of ~ 200 nm. Small spherical aggregates are also observed for the HAB₃ sequence (the zoom-in plot at the bottom) with diameters ranging between 50 and 200 nm. In contrary, the HA₃B sequence forms large microspheres with diameters ranging between 0.5 and 5 µm. The zoom-in plot at the bottom shows a few small microspheres with diameters of ~ 1 µm. The H(AB)₂ sequence forms condensed films composed of intermediate-sized spherical aggregates with diameters ranging between 0.2 and 0.6 µm. (d) Experimental FTIR-derived percentages of the protein secondary-structure contents for the three peptides sequences. The size of the peptide aggregate (center around the β-sheet crystals) correlates directly with the ordered (β-sheet and helical) content and is consistent with the trend observed from the SEM images, i.e., peptides with larger “A”-“B” domain ratios forms larger aggregate structures. (e) DPD simulated median number of “a” beads per node (or aggregate size) after equilibration as a quantitative measure of the ordered contents, which correlates perfectly well with the SEM and FTIR results. The lower and upper error bars are the 25% and 75% percentiles of all aggregate sizes, respectively.
Supplementary Figure 4 | Experimental AFM images of H(AB)\textsubscript{2} and H(AB)\textsubscript{12} sequences in aqueous solutions. The H(AB)\textsubscript{2} sequence forms spherical aggregates with diameters of 6 \~ 10 nm, while the H(AB)\textsubscript{12} sequence forms slightly larger spherical aggregates with diameters of 15 \~ 20 nm. The two AFM height plots on the right provide quantitative values of the aggregate sizes measured along the red line in the AFM images. (b) Experimental FTIR-derived percentages of the protein secondary-structure contents for as synthesized H(AB)\textsubscript{2} and H(AB)\textsubscript{12} sequences, as well as the H(AB)\textsubscript{12} sequence after spinning. The sizes of H(AB)\textsubscript{2} and H(AB)\textsubscript{12} aggregates correlate directly with the ordered (\(\beta\)-sheet and helical) content. Only long sequences or polymer chains can form larger aggregates after shear flow that lead to film assembly. (c) DPD simulated median number of “a” beads per node (or aggregate size) after equilibration as a quantitative measure of the ordered contents, which correlates perfectly well with the FTIR results and is consistent with the AFM images. The lower and upper error bars are the 25\% and 75\% percentiles of all aggregate sizes, respectively.
Supplementary Figure 5 | (a) SEM images of H(AB)$_{12}$ in aqueous solutions at 2.5 mg/ml (top) and 1 mg/ml (bottom). Fibers (top) and nano-fibers (bottom) were observed for H(AB)$_{12}$. (b) Stiffness (Young’s modulus) maps (top) and the corresponding stiffness distributions (bottom) of dried film samples of H(AB)$_{12}$ before spinning. The stiffness map is obtained using nanoindentation measurements over a 20 × 20 μm2 squared region on the film with a 2 × 2 μm2 resolution.
Supplementary Figure 6 | Series of SEM images showing the hierarchical structure of syringe spun silk fibre bundles using the H(AB)$_{12}$ sequence dissolved in HFIP. The spherical protein aggregates ($D \sim 60$ nm, bottom middle) are confirmed as the fundamental building block of the fibre.
Supplementary Figure 7 | Bright field microscopic images of the H(AB)_2 sequence after syringe spinning, showing disordered films when dissolved in both solvents.
Supplementary Figure 8 | Model of a multiply connected elastic network. Node 1 and node 2 are connected by total N springs with identical spring constant k. The left bridge has multiplicity m and the right bridge has multiplicity $(N - m)$. The overall stiffness of the network shows a perfect analogy with a resistance network with identical connections.
Supplementary Figure 9 | Fourier Transform Infrared (FTIR) spectra and corresponding Fourier Self-Deconvolution (FSD) data for the H(AB)$_2$ sequence and the H(AB)$_{12}$ sequence before and after spun. The absorbance bands in the Amide I region are marked as random coil (R), β-sheets (B), α-helices (A), turns (T), and side chains (SC) in the FSD curve fitting plots.
Supplementary Figure 10 | Experimental setup and protocol for the syringe needle spinning of recombinant silk fibres.
Supplementary Figure 11 | Sample AFM nanoindentation results. Force vs. indentation depth curves for the original dried film (a) and the spun (b) fibre using the H(AB)_{12} sequence.
Supplementary Table 1 | Amino acid sequences of the investigated silk-like protein blocks. Since poly(alanine) \((A)_n\) and \((GA)_n\) regions have been shown to form \(\beta\)-sheet structures in the fibre\(^1\), we consider them as one logical block “A”. The “H” block is a histidine-tag sequence of a pet30a(+) vector which possesses two enzymatic sites: enterokinase and thrombin cleavage sites.

<table>
<thead>
<tr>
<th>Code</th>
<th>Silk-Like Protein Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A” (hydrophobic), MW = 1247 Da</td>
<td>GAGAAAGAGTS</td>
</tr>
<tr>
<td>“B” (hydrophilic), MW = 1960 Da</td>
<td>QGGYGGLGSQGSGRGGLGGQT</td>
</tr>
<tr>
<td>“H” (hydrophilic), MW = 5239 Da</td>
<td>MHHHHHSSGLVPRGSMKETAAA KFERQHMDSPDLGTDDDKAMAS</td>
</tr>
</tbody>
</table>
Supplementary Table 2 | Repulsive interaction parameter d_{ij} for the DPD potential.

<table>
<thead>
<tr>
<th></th>
<th>“w”</th>
<th>“a”</th>
<th>“b”</th>
</tr>
</thead>
<tbody>
<tr>
<td>“w”</td>
<td>25</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>“a”</td>
<td>40</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>“b”</td>
<td>26</td>
<td>27</td>
<td>25</td>
</tr>
</tbody>
</table>
Supplementary Discussion

Correlation between Protein Length, Network Percolation and Fibre Mechanics. Consider a protein composed by \(N \) units, each of them composed itself by \(n_a \) amorphous regions \(A \) of unit length \(a \) and \(n_b \) crystalline regions \(B \) of unit length \(b \), namely \(\beta \)-sheets of length \(n_b \) in artificially spun or natural silk. The protein can be denoted as \((A_{n_a} B_{n_b})N\); in real spider silk \(n_a = n_b = 1 \approx N/100 \). The length of the protein is thus \(L_N = (a n_a + b n_b)N = L_a N \). An interaction can take place only between \(B \) regions of a same (self-interaction) protein or of different (cross-linked) proteins. The self-interaction is defined here as the number fraction \(s = n/N \) of \(\beta \)-sheets assembled together in the same crystal and protein after spinning. According to this, after spinning, the contour length of the protein becomes \(l = L_a N (N - n) \) whereas the transversal size of the crystal is \(d = nc \), where \(c \) is the separation distance between the \(\beta \)-sheets in the crystalline phase.

Denoting with \(\phi \) the proteins content in the silk and with \(i = \phi - \varphi \) their geometrical overlapping fraction after spinning (an index of their interaction) with percolation theory we find \(i = \phi + e^{-\varphi} - 1 \). At the percolation threshold \(\phi = \phi_c \) and its critical value can be calculated numerically. An analytical estimation can be obtained invoking percolation theory; in particular, following Xia and Thorpe\(^2\) and denoting by \(\lambda = \frac{l}{d} + \frac{d}{l} \) the “protein slenderness”, \(\phi_c \approx -\ln \frac{1 + 4\lambda}{19 + 4\lambda} \).

The strength (a similar argument can be invoked for the Young’s modulus) of the silk is thus expected to scale as \(\sigma_s \approx \sigma_c (\phi - \phi_c)^\gamma \cos^k \vartheta \) where \(\sigma_c \) is the strength of the protein and \(\vartheta = \sqrt{\langle \theta^2 \rangle} \), where \(\theta \) is the protein orientation after spinning; according to rubber elasticity (in agreement with classical rules of mixture) we expect \(\gamma \approx 1 \) whereas assuming a discrete network \(k \approx 1 \) (for a continuum \(k \approx 2 \))\(^3\).

During spinning the proteins become more aligned for two main reasons: shear mixing and fibre dimension reduction. Denoting by \(\vartheta(R) \) the orientation after spinning at a fibre size \(R \), we can calculate the orientation \(\vartheta(r) \) for a different fibre size \(r \) fixing the degree of mixing. Assuming the liquid crystal as incompressible we find \(\tan \vartheta(r) = (r/R)^\omega \tan \vartheta(R) \) with \(\omega = 2 \); note that for constant volume under small elastic deformations, that is not the case of large plastic deformations that we have considered here, the Poisson’s ratio is \(\nu = 1/2 \); the other limiting case of \(\nu = 0 \) denotes maximal compressibility and, for such a case, we find the same scaling but with the exponent \(\omega = 1 \). The strength thus assumes the form:

\[
\sigma_s \approx \frac{(\phi - \phi_c)^\gamma}{\left(1 + (r/R)^{2\omega} \tan^2 \vartheta(R)\right)^{k/2}} \sigma_c \quad \text{for} \quad \phi \geq \phi_c \quad \text{or} \quad \sigma_s \approx 0 \quad \phi < \phi_c
\]

(1)

with:

\[
\phi_c \approx -\ln \frac{1 + 4\lambda}{19 + 4\lambda}, \quad \lambda = \frac{l}{d} + \frac{d}{l}, \quad \frac{l}{d} = \frac{L_a N (N - 1)}{c \left(\frac{N}{n} - 1\right)}, \quad L_a = a n_a + b n_b
\]

(2)

Note that \(\sigma_c \) itself is a function of the protein length, e.g., according to Weibull’s statistics, namely:

\[S14 \]
\[\sigma_c (N, n_a, n_b) \approx \sigma_c (N = n_a = n_b = 1) \cdot N^{\frac{1}{m} n_a^{-\frac{1}{m_a}} n_b^{-\frac{1}{m_b}}} \]

(3)

where \(m, m_a, m_b \) are the related Weibull’s moduli.

According to the model, for short protein lengths or small values of \(N \), the strength of the chain increases but the interaction between the proteins decreases, and vice versa for long protein lengths or \(N \). Thus an optimal value for the number \(N \) naturally emerges from the model; such optimal value for maximal strength is likely close to the experimental value observed in spider silk (the number \(N \) could also be limited by processability during spinning, this mechanism would have an effect similar to that of Weibull).

Furthermore, assuming the same Weibull’s moduli, since \(N \) appears at the second power in \(\lambda \) whereas \(n_a, n_b \) appear at the first power, would imply a maximal strength minimizing the numbers \(n_a, n_b \); this is observed in spider silk, for which \(n_a = n_b = 1 \). Note that a minimal value \(\lambda_c \) or content \(\phi_c \) or units \(N \) naturally emerge from the model in order to have a non-vanishing strength; in the asymptotic limit of \(\lambda \gg 1 \), for example, we find: \(\lambda_c \approx 9/(2\phi) \) or \(\phi_c \approx 9/(2\lambda) \). Vanishing strength for short proteins have been observed experimentally and numerically (Fig. 7).

Finally note that the asymptotic scaling of the strength is \(\sigma_s \approx (r/R)^{-\alpha k} \) with \(\alpha k = 1 \) for a network of maximal compressibility, \(\alpha k = 2 \) for an incompressible network or a continuum with maximal compressibility (that thus can be considered similar systems in this context) and \(\alpha k = 4 \) for an incompressible continuum. Accordingly, for our protein network, we expect after spinning an intermediate scaling of \(\alpha k \approx 3/2 \), very close to the experimental observations\(^4\).

Correlation between Network Conductance and Young’s Modulus. To demonstrate the observed correlation between the network conductance and Young’s modulus, we consider a multiply connected elastic network, established via total \(N \) bridges with identical spring constant \(k \) as shown in Supplementary Fig. 8. Node 1 and node 2 are connected by another node in the middle via spring bundle with \(m \) multiplicity and \((N - m)\) multiplicity, respectively. The total stiffness between two nodes \(k_{12} \) can be written as \((1/mk + 1/(N-m)k)^{-1} = (N-m)m/N k \). We can immediately realize that the coefficient \((N-m)m/N \) is the network conductance due to the analogy between an elastic network and a resistance network.

Thus, the network conductance not only captures the percolation of network but also the stiffness of the elastic network as demonstrated in Fig. 7, regardless of network topology. The Young’s modulus of both isotropic homogeneous networks before shear and anisotropic inhomogeneous network after shear show strong a correlation with network conductance. In contrast, the total number of bridges \(N \) shows a direct proportionality with the Young’s modulus of the network only before spinning (Fig. 7 (b)). When two nodes are connected by identical number of springs (that is, \(m = N/2 \)), the overall stiffness \(k_{12} \) becomes \(k \), which is proportional to the total number of bridges \(N \). This proportionality between stiffness and \(N \) corresponds to the prediction of the classical polymer theory, applicable here before spinning (limiting case for \(m \) being equals to \(N/2 \); in the condition verified before spinning, see Fig. 7 (b)). Whereas, in general cases and both before and after spinning, and for different levels of
heterogeneity, we observe a proportionality between stiffness and conductance \((N\cdot m) m/N\) (see Fig. 7 (b)), which is hence identified as the key parameter for predictive design of biological silk fibers.
Supplementary Methods

General DPD Modelling Approach. To simulate the fibre formation process, we employed the dissipated particle dynamics (DPD)\(^6\), a mesoscale particle-based coarse-graining simulation method. DPD allows to access time and length scales that are far beyond the reach of ordinary molecular dynamics, but of high interest for polymers and large biomolecules. DPD is a representative mesoscopic computational model that has been widely applied to study the structural evolution of complex polymer solutions. Using the DPD method, we model silk fibres as polymeric soft matter, which is different from our previous bead-spring model that coarse-grains silk fibres into a triangular crystal lattice\(^6\). This new approach allows for more structural flexibility for the protein building-blocks of silk and is indeed suitable for subsequent modelling of the large structural evolution during the shear flow spinning process. We simulate the structural changes of the silk protein/polymer solutions during various processing steps consisting of: (a) equilibration of the aqueous polymer solution (right after the protein synthesis), (b) shearing of the polymer solution (to mimic the flow focusing condition in the microchannel\(^4\)), and (c) stretching of the resulting polymer fibres (to mechanically test their robustness and stiffness). It is reasonable to describe the spinning process to be a pure shear flow because the shear strain is much higher than the elongational strain, as validated by computational fluid dynamics (CFD) simulations\(^7\). In this study, silk peptides and proteins are described as multiblock copolymer chains composed of hydrophobic “a” and hydrophilic “b” beads, each representing 3 amino acids in the “A” and “B” domains of the copolymer, respectively. The polymer chains are immersed in water in which every 9 water molecules are represented by one hydrophilic “w” bead. Note that the “H” domain is modelled using the same hydrophilic “b” beads as in the “B” domain as a reasonable approximation. A fixed 20% volume fraction of coarse-grained polymer beads is used in all cases to match the experimental spinning condition.

We model spider silk inspired peptides and proteins as a linear chain of two type of beads: i) beads of block A that are denoted with the lowercase letter “a”, and ii) beads of block “B” denoted by the lowercase letter “b”. The amino acid sequence of block “A” is “GAGAAAAGGAGTS”, mimicking the poly-alanine domain of the MaSp1 protein in the natural silk. On the other hand, the sequence of block “B” is “QGYYGLGSQGSGRGGLGGQTS” which is inspired by the other MaSp1 domain with Gly-rich GGX repeats. Our model describes the properties of block “A” and “B” at a coarse-grained level and hence we omit the chemical details of different amino acids within the blocks. Key properties incorporated for block “A” are hydrophobicity and the ability to form hydrogen bonds with other members of “A” blocks. Block “B” is simplified as being hydrophilic. Other interactions are not taken into account for our model. We assemble the “A” and “B” blocks to peptides of various sequences to explore effects of various hydrophobic/hydrophilic ratio and chain length, with explicit water particles denoted by “w”. The interaction between particles is short-ranged and nonsingular, allowing us to use a considerably larger time step compared to conventional MD simulations. Compressibility and solubility of particles are described by purely repulsive soft potential. Neighbouring particles in a polypeptide chain are interacted via a simple bead-spring model, and hydrogen bonds between “a” beads are modelled by a short-ranged modified harmonic potential.

In DPD, the time evolution of the particle positions are simulated according to Newton’s equations of motion where the force acting on a particle adds up three pair-wise forces: the conservative force \(\vec{F}^C_{ij}\), the dissipative force \(\vec{F}^D_{ij}\) and a random force \(\vec{F}^R_{ij}\), giving

\[
\vec{F}_i = \sum_{j \neq i}(\vec{F}^C_{ij} + \vec{F}^D_{ij} + \vec{F}^R_{ij})
\]

where the sum contains only particles \(j\) within a certain cut-off radius \(R_c\). The conservative force is given by...
\[\vec{F}^C_{ij} = -a_{ij} \left(1 - \frac{|\vec{r}_{ij}|}{R_c} \right) \hat{r}_{ij} \] (5)

The parameter \(a_{ij}\) determines the maximum repulsion between particles \(i\) and \(j\), \(\vec{r}_{ij} = \vec{r}_j - \vec{r}_i\) and \(\hat{r}_{ij}\) is a unit vector along \(\vec{r}_{ij}\). The values of \(a_{ij}\) are fitted to reproduce the compressibility of the liquid and the solubility of various components by mapping into Flory-Huggins \(\chi\) parameter.\(^5\)\(^,\)\(^8\). We added two more conservative forces \(\vec{F}^C_{HB}\) and \(\vec{F}^C_{PC}\) to account for the effects of hydrogen bonding and polymer chains, respectively. The details of those terms will be described in later sections.

The remaining two forces, the dissipative and the random force, acting as heat sink and source, respectively, are given by

\[\vec{F}^D_{ij} = -\gamma w^D(r_{ij})(\hat{r}_{ij} \cdot \vec{v}_{ij}) \hat{r}_{ij} \] (6)

\[\vec{F}^R_{ij} = \sigma w^R(r_{ij}) \theta_{ij} \hat{r}_{ij} \] (7)

where \(w^D\) and \(w^R\) are \(r\)-dependent weight functions, that are set to zero at \(r \geq R_c\), \(v_{ij} = v_j - v_i\), and \(\theta_{ij}(t)\) is a Gaussian-distributed randomly fluctuating variable with zero mean and unit variance. The random function is independent for each pair of particles. While one weight function can be chosen arbitrarily, it has been shown that for sampling a \(NVT\) ensemble the following relation must hold:

\[2k_B T \gamma w^D(r) = \sigma [w^R(r)]^2 \] (8)

\[\sigma^2 = 2k_B T \gamma \] (9)

This particular thermostat is special in that it conserves momentum and thus correctly describes hydrodynamics. As common in DPD simulations, we take \(w^D(r) = \left(1 - \frac{r}{R_c} \right)^2\). The DPD cut-off \(R_c\) is taken as the characteristic length scale and \(k_B T\) as the characteristic energy scale and the mass is also set to unity and hence, \(R_c = k_B T = m = 1\). The friction parameter is set to \(\gamma = 4.5\) following other publications\(^1\)\(^,\)\(^2\). The simulation time is expressed in a natural time unit of \(\tau = R_c \sqrt{\frac{m}{k_B T}}\) and time step of 0.03\(\tau\) is used in the present study.

Coarse-graining Scheme and Time/Length Scales. We coarse grain nine water molecules into one bead. The molecular volume of water is 30 Å\(^3\), so that one bead represents a volume of 270 Å\(^3\). Following the convention, we chose the beads of different phases, i.e., “a” and “b”, to be of equal volume with water bead. By comparing the amino acid residue volumes in the sequence, we find that the alanine residue volume is close to the mean volume of all amino acid residues in blocks “A” and “B”, and is therefore chosen as a reference volume. The alanine residue volume of 86 Å\(^3\) is about a third of the single bead volume of 270 Å\(^3\), giving the coarse-graining level of three amino acid residues per bead. As presented in Supplementary Table 1, the given peptide sequences are lumped into 5 “a” beads for one A-block and 7 “b” beads for one B-block. The hydrophilic hexahistidine tag is introduced for facile purification in experiments, and is modelled as 16 “b” beads here for simplicity.
The number density of the simulation is chosen to be \(\rho R_c^2 = 3 \). Taking into account that one bead represents a volume of 270 \(\text{Å}^3 \), we have \(R_c = 9.321 \text{ Å} \). At 300 K, \(k_BT = 4.14 \times 10^{-21} \text{ J} = 41.4 \text{ pN} \cdot \text{ Å} \). \(m \) is the mass of 9 water molecules, i.e., \(m = 2.692 \times 10^{-25} \text{ kg} \). Combining these values, we obtain the intrinsic time scale \(\tau_{int} = R_c \sqrt{\frac{m}{k_BT}} = 7.52 \text{ ps} \).

However, because of the coarse-graining, we lose track of the physical unit of time. To gauge the time unit, the long-time diffusion constant of water is matched. Following the study of Groot 200113, the physical time unit can be written as follows, \(\tau_{physicai} = \frac{N_m D_{\text{sim}} R_c^2}{D_{\text{water}}} \) where \(N_m \) is the number of water molecules in a bead and \(D_{\text{water}} \) is the self diffusion constant of water14, \(2.43 \times 10^{-5} \text{ cm}^2/\text{s} \). With the noise parameter \(\gamma = 4.5 \) and \(a_{ww} = 25 \), we obtain the self diffusion constant of water beads \(D_{\text{sim}} = \frac{0.23 R_c^2}{\tau} \). This leads to the physical time scale of \(\tau_{physicai} = 0.75 \text{ ns} \), and a time step of \(\Delta t = 0.03 \tau = 0.0224 \text{ ns} \) which is about 5 orders of magnitude larger than the conventional MD time step.

Interaction Parameters. (1) Repulsive interaction parameters \(a_{ij} \): The magnitude of the repulsive conservative force parameters \(a_{ij} = a_{ii} + [\Delta a]_{ij} \) are determined to represent the compressibility and solubility of the system. To match the compressibility of water5,8, the repulsive interaction between two beads of the same species, including water, hydrophobic, and hydrophilic beads is chosen as \(a_{ii} = a_{ww} = a_{aa} = a_{bb} = 25 \). The remaining parameters \([\Delta a]_{ij} \) can be chosen to represent hydrophobic and hydrophilic interactions of “a” and “b” beads with water, by mapping into the phenomenological Flory-Huggins parameter \(\chi 5,8 \). A distinct value of \(\chi \) is required for amino acid residues, but no such experiments are found in the literature to the best of our knowledge. Even though the distinct \(\chi \) values are available for all amino acids in the sequence, we cannot follow the rigorous mapping procedure due to complex chemical details of each amino acid. Instead, we chose to take parameters that can qualitatively capture the overall behaviour such as formation of stable micelle from diblock copolymer, and miscibility between “A” and “B” blocks15,16. We have chosen values from existing studies10,11, where the stable micelle formation are observed. All \(a_{ij} \) values are presented in Supplementary Table 2.

(2) Peptide chain bead spring model: The force-extension behaviour of a single spider silk peptide has been described by the worm like chain (WLC) model with persistence length \(\lambda_p = 4.0 \text{ Å} \) from atomic microscopic experiments17, and the elastic stiffness over full extension has been calculated by full atomistic simulations1,18-20. For simplicity, we model each peptide chain with a simple bead-spring model where equilibrium segment length is \(a \) and the force between neighbouring beads are given by \(-k_{\text{seg}}(r-a)\), so called extensible freely jointed chain (EFJC). The force-extension curve for EFJC can be obtained analytically as follows,

\[
f = \frac{k_BT}{a} L^{-1} \left(\frac{r}{L_{\text{tot}}} \right) \tag{10}
\]

where \(f \) is the stretch force, \(r \) is the end-to-end distance, \(k_BT \) is Boltzmann constant, and \(T \) is the absolute temperature. When there are \(n \) segments in the chain, \(L_{\text{tot}} \) is given by \(na + \frac{nf}{k_{\text{seg}}} \), i.e., contour length plus the amount of extension by applied force \(f \). The inverse Langevin function \(L^{-1} \) is defined as \(\frac{r}{L_{\text{tot}}} = \coth \beta - \frac{1}{\beta} = L(\beta) \) and \(\beta = L^{-1} \left(\frac{r}{L_{\text{tot}}} \right) \). Because the full force-extension of WLC or extensible WLC cannot be fully captured by our simple bead-spring model, we attempt to correctly
model two asymptotic regimes, small extension regime near \(r = 0 \) and the elastic extension regime near the full extension.

Near \(r = 0 \), it is known that \(f^{FJC} = \frac{3k_B T}{na^2} r \) and \(f^{WLC} = \frac{3k_B T}{2\lambda_p L_{cont}} r \) where \(L_{cont} \) is the contour length of the chain. The small extension response can be matched by making the slope of \(f - r \) curve identical. Noting that the fully extended trans-peptide bond is 3.8 Å, we have the full extension length \(l = 3 \times 3.8 = 11.2 \) Å between two neighboring beads in the chain. Conventionally, the contour length \(l \) of the FJC is chosen to be the physical contour length \(nl \) and \(n \) is set to be \(2\lambda_p \), which makes the FJC much softer than WLC at high extension regime. Instead, by choosing \(a = \sqrt{2\lambda_p l} = 9.55 \) Å, we obtain the identical small extension response between FJC and WLC, as well as moderately good match at high extension regime (Supplementary Fig. 1 (a)). Close to the full extension, the slope of the EFJC force extension curve approaches to \(\frac{k_{seg}}{n} \) due to finite rigidity of each bond, which can be interpreted as the stretch of covalent bonds. Full atomistic simulation studies have shown that the effective stiffness of seven 54 amino acid long spider silk repeats to be 103.8 \(\frac{pN}{Å} \). Noting that 54 amino acid peptide chain has 18 segments in our coarse-graining level, \(k_{seg} = 18 \times \frac{103.8}{7} = 268.2 \frac{pN}{Å} = 118.5 \frac{kg_f}{R_c^2} \). Overall, our EFJC model describes the WLC force extension curve very well, as shown in Supplementary Fig. 1 (a).

(3) Hydrogen bonding potential: Each amino acid residue forms two hydrogen bonds with amino acids in the nearby peptide, and the hydrogen bonding energy obtained from atomistic simulation is 2.83 \(\frac{kcal}{mol} = 4.75 \) \(k_B T \) at \(T = 300K \). Thus, the cohesive energy of each coarse-grained bead is required to be \(6 \times 4.75 = 28.5 \) \(k_B T \).

We do not consider the orientation dependence of hydrogen bond, but simply overlay a short-ranged modified harmonic potential to the DPD potential with a cutoff distance \(R_c \). The explicit form of the overlaid potential is

\[
U^{HB}(r) = \begin{cases}
-E_0 \frac{(R_c^2 - r^2)^2(R_c^2 + 2r^2 - 3r_0^2)}{(R_c^2 - r_0^2)^3} & \text{for } r > r_0 \\
\frac{1}{2} k_{HB} (r - r_0)^2 - E_0 & \text{for } r \leq r_0
\end{cases}
\]

(11)

where the spring constant is chosen to match the second order derivative of the potential around \(r = r_0 \), so that \(k_{HB} = \frac{24r_0^2 E_0}{(R_c^2 - r_0^2)^4} \), as depicted in Supplementary Fig. 1 (b). The functional form converges smoothly to zero at \(r = R_c \) and the force \(F^{HB} \) is computed from negative derivative of \(U^{HB} \).

Because the lowest energy configuration is face-centred-cubic (FCC) crystal for an isotropic potential, we set the equilibrium distance between the beads is set to be 0.778 \(R_c \) to match the DPD density of \(\rho R_c^3 = 3 \). Note that the cohesive energy of an “a” bead corresponds to 10 times the broken bond energy, due to two physical bonds with two neighbouring amino acids in the same chain. Thus, the individual bond energy is chosen to be 28.5 \(\frac{kg_f}{R_c^2} \) at distance 0.778 \(R_c \). To have the bond energy of hybrid DPD plus HB potential to be 2.85 \(k_B T \) at distance 0.778 \(R_c \), as depicted in Fig 3, we iteratively determine \(r_0 = 0.756 R_c \) and \(E_0 = 3.53 \) \(k_B T \). The equilibrium distance \(a \) between neighbouring “a” beads in the chain is chosen to be 0.778 \(R_c \) to match the equilibrium distance of hybrid potential. Thus, the WLC force-extension curve matches only with the B block of the chain. However, using a different equilibrium distance for “a”-“a” bond would affect the assembly process and mechanical property of

\[S20 \]
the fiber negligibly, because “a” beads form aggregated crystals for the most of the time and would not play a significant role except the onset of failure.

Modelling Shear Flow. The laminar flow in microfluidic channel is modelled by achieving Couette flow condition in the simulation cell. The Lees-Edwards boundary conditions were applied to generate the shear flow such that the same shear rate was applied to all materials in the system. Specifically, we deform the box with a constant engineering strain rate \(\gamma_{xy} \), by constantly increasing the tilt of the simulation box. The tilt in the x-direction continues until the shear strain of 0.5 is reached, then the box flips to the negative 0.5 shear strain while keeping the real coordinates and velocities of particles. A continuous shear flow is generated by repeating this procedure. When a particle crosses a periodic boundary along y axis, a delta is added (or subtracted) to its velocity that is equal to the difference of velocities between the low and high boundary, i.e., \(\Delta \vec{v} = L_y \hat{y}_{xy} \hat{x} \). This process generates the velocity profile \(v_x(y) \) that linearly varies from \(-\frac{1}{2} L_y \hat{y}_{xy} \) at \(y = 0 \) to \(\frac{1}{2} L_y \hat{y}_{xy} \) at \(y = L_y \), as presented in Supplementary Fig. 2 (a).

The steady-state shear flow and translational velocity along x axis induced by our method are not compatible with conventional thermostats such as Nose-Hoover thermostat and Langevin thermostat where temperature is regulated by feedback algorithms based on the absolute velocity of each particle. However, DPD thermostat relies on the relative velocity between a pair of particles within short cutoff distance \(R_c \), and temperature is regulated effectively with small errors. The periodic boundary along y has exceptionally high relative velocity due to velocity remapping boundary, which creates deviation from the perfect Couette flow condition around \(y = 0 \) and \(y = L_y \). However, the volume fraction of the area is relatively small and overall effect on the thermostat is negligible, as shown in Supplementary Fig. 2 (b).

Experimental SEM, AFM and FTIR Analysis. Under SEM, the HAB sequence forms perforated films with a pore size of \(\sim 200 \text{ nm} \) (Supplementary Fig. 3 (a), top), but small spherical aggregates are also observed for the HAB sequence with diameters ranging between 50 and 200 nm (Supplementary Fig. 3 (a), bottom). In contrast, the HA sequence forms much larger microspheres with diameters ranging between 0.5 and 5 \(\mu \text{m} \) (Supplementary Fig. 3 (c)). The H(AB) sequence forms condensed films composed of intermediate-sized spherical aggregates with diameters ranging between 0.2 and 0.6 \(\mu \text{m} \) (Supplementary Fig. 3 (b)). This trend that block copolymers possessing larger hydrophobic-hydrophilic domain ratios form larger aggregates is in good agreement with other theoretical and experimental studies on self-assembly of block copolymers in aqueous solutions. This trend is also confirmed by our previous Fourier Transform Infrared (FTIR) Spectroscopy measurements, which further provides the percentages of various protein secondary-structure contents for the peptide aggregates (centre around the \(\beta \)-sheet crystals) after Fourier Self-Deconvolution (FSD) of the FTIR spectra (Supplementary Fig. 3 (d)). Both helical and disordered contents exhibit minor changes among the above three peptide cases, while the percentage of the \(\beta \)-sheet content varies a lot and correlates perfectly well with the “A”-“B” domain ratio. This morphological correlation is also well captured in our DPD simulations in which the number of “a” beads per aggregate (referred to as “node” here) measures the amount of the ordered (\(\beta \)-sheet and helical) contents in the aggregate (Supplementary Fig. 3 (e)).

Under AFM, the H(AB) sequence forms spherical aggregates with diameters of 6 ~ 10 nm, while the H(AB) sequence forms slightly larger spherical aggregates with diameters of 15 ~ 20 nm
(Supplementary Fig. 4 (a)). FTIR-derived percentages of protein secondary-structure contents show similar β-sheet contents for H(AB)$_2$ and H(AB)$_{12}$ sequences, but the longer H(AB)$_{12}$ sequence exhibits greatly enlarged β-sheet contents (or aggregate size) after the spinning process (modelled by the shear flow here) (Supplementary Fig. 4 (b)). This morphological change is also well captured in our DPD simulated ordered contents of H(AB)$_2$ (before shear flow) and H(AB)$_{12}$ (both before and after shear flow) (Supplementary Fig. 4 (c)).

It is noteworthy that for HFIP-dissolved H(AB)$_{12}$ solutions, the dried and the rehydrated fibres exhibit similar averaged stiffness values (Fig. 6 (f)), with a slight broadening in stiffness distribution of the rehydrated case. However, for H(AB)$_{12}$ dissolved in aqueous LiBr solutions, the resulting dried fibre is 10 times stiffer than the rehydrated one (Fig. 6 (f)), which might be due to the dramatic fiber structural change from supercontraction23. The ultrahigh stiffness value of 8 ± 4 GPa for the dried fibres when using water as the solvent suggests that silk proteins self-assemble much better in water (e.g., to facilitate intermolecular hydrogen bonds) than in organic solvents such as HFIP to yield stiffer fibres.
Supplementary References

