A model for hierarchical anisotropic friction, adhesion and wear

Alice Berardoa,b, Nicola M. Pugnoa,c,*

a Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
b Fondazione Edmund Mach, Via Edmund Mach, 1 - 38010, San Michele all'Adige, TN, Italy
c School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK

ARTICLE INFO

Keywords:
Anisotropic friction
Hierarchy
Roughness
Adhesion

ABSTRACT

Due to a widespread number of examples, biological hierarchical structures have been studied for years, founding that surface properties are strictly correlated to the surface roughness. Since friction appears to be a multiscale phenomenon and hierarchy optimizes the macroscopic mechanical properties of bodies, it may be of great interest to develop a model to predict friction of structures with hierarchical surfaces.

Thus, we propose an analytical model to describe anisotropic friction, adhesion and wear of hierarchical surfaces. The model describes friction between two generic rough surfaces in contact, sliding one against the other. Then, it has been extended to adhesion, wear and finally to multiple hierarchical levels to obtain the global frictional response.

1. Introduction

Although it has been studied for centuries, friction still includes various open questions due to many aspects occurring at the interface between bodies in relative motion.

Leonardo da Vinci first proposed the “laws of dry friction”, then reformulated and collected by Amontons in the so-called four “laws of friction”, which are the basic qualitative concepts related to this very complex phenomenon [1,2].

Despite their simplicity, these laws resulted in the Amontons-Coulomb constitutive laws of friction [3–5], summarized as follows:

- The friction resistance increases or decreases proportionally to the applied pressure;
- The friction coefficient (which is the ratio between the friction force and the normal load) is independent of the sliding velocity, contact area and surface roughness [2,4–6].

Coulomb stated that “Friction and cohesion are not active forces like gravity, but only passive forces” [2], highlighting that they arise only in the presence of an incipient relative motion (static friction force) or during the sliding (dynamic friction force). He also generalized the relationship between the tangential force and the applied load, by introducing a cohesive contribution, independent of the normal pressure.

The frictional stress τ is expressed as follows:

$$\tau = \tau_0 + \mu \sigma_N$$

where τ_0 is the cohesive component, σ_N is the normal pressure and μ is the internal coefficient of friction.

The Coulomb’s law is still considered the basis for the description of dry friction in classical mechanics, even though recent studies have proved that some deviations may occur [7–10]. For example, it does not consider the presence of anisotropy, i.e. when the friction force depends on the direction of sliding, or how the normal load depends on the real contact area.

Over the years, analytical models have been introduced to study the complicated problem of friction. One of the main contact theories was introduced by Hertz [11], which paved the way for the development of more recent models for contact mechanics, such as the one proposed by Greenwood and Williamson (GW) [12], the so called multi-asperity model and the related studies by Majumdar and Bhushan [13,14], or alternative solutions, such as Persson’s theory [3,15,16]. They presented different approaches to compute the response of a rough surface in contact with a flat substrate, due to a normal load. Greenwood and Williamson developed the Archard’s studies, assuming a surface formed...
by n elastic spherical caps with equal radii but different heights and provided the solution for the contact area after pressing this multi-asperity surface against a rigid plane [12,17,18]. They found that the area of real contact, usually smaller than the apparent contact area [6], is proportional to the load, while the average size of micro contacts is independent of the load. Indeed, when the load increases, new contact spots are generated. On the contrary, Persson referred to surface roughness by defining the power spectral density of the undeformed rough surface and studied the contact mechanics between this rough rigid surface and a semi-infinite elastic solid.

Other models have been developed during the years to study the interaction between the asperities of rough surfaces. The one proposed by Caroli and Nozières [19] studied velocity independent friction in a dry system and found that it is generated by hysteretic behaviour, while the elastic interactions between the asperities play a minor role in solid friction of multicontact interfaces. Mroz and Stupkiewicz [20] reported a friction model for anisotropic friction, based on the local validity of the classical Coulomb’s law [6], which considers parallel springs to simulate the interaction between rough surfaces and that was also applied more recently in Ref. [21].

However, friction is not only a macroscopic problem, but it also involves several effects that occur at the micro and nanoscale, from adhesion to asperity interactions [22,23], which can also influence the mechanical properties of materials e.g. toughness for microfibers [24,25].

As reported in past and recent works [7–10,20,26–28], contact between rough surfaces is an example of a multiscale problem, sometimes leading to hierarchical and fractal geometries [29–33]. Indeed, biological structures have efficient ways to minimize or maximize friction or to adapt to different environments depending on the goals [34,35]. Usually, these intriguing properties have been developed thanks to a specific hierarchical structure. By changing its organization, variations in the mechanical and physical properties are possible. For this reason, systems and structures in nature draw a lot of attention thanks to their high efficiency and durability [36–38] and to date, the interest in transferring technologies from biological systems into engineering applications has been greatly pursued in the field of tribology.

This being the case, in the proposed paper an analytical model for anisotropic dynamic friction is introduced, which directly connects roughness with the friction coefficient. The model has been extended from Ref. [20] by introducing one-dimensional (1D) and two-dimensional (2D) roughness. Subsequently, other aspects have been developed as (i) adhesion, modelled as a tensile force increasing its effects during surfaces separation, (ii) wear, introduced to modify the roughness profile, according to Archard’s law [18], and (iii) hierarchy, studying the contribution of fractal surfaces to the frictional response of the system [23,39].

2. The Anisotropic Lattice Spring Friction Model (ALSFM)

Suppose to have two rough surfaces in contact, modelled as reported in Fig. 1a, where roughness can be expressed by a continuous and

![Fig. 1. a) 2D roughness visualization. A set of longitudinal springs governs the interaction at the interface. b) Detail of one surface with 2D roughness: we consider the force equilibrium at point $P (P \in f(x,y))$ due to the spring interaction. To obtain each force contribution, the tangent plane (x) in P is considered. c) Force decomposition on x with respect to the local system $x'y'z'$ in P. To obtain the final reactions in the global reference system xyz, the rotation matrix must be applied (α). β_0 identifies the direction of the sliding velocity vector v_0 on the x plane, tilted by φ from $x'y'$ plane, while v is the projected sliding velocity and β the projection of β_0 on the $x'y'$ plane. d) Detail of one surface with 1D roughness (along x direction): we consider the force equilibrium at point $P (P \in f(x))$ due to the spring interaction. To obtain each force contribution, in this case the tangent plane (x) in P is considered as well. e) Force decomposition on x with respect to the local system xyz in P is considered. In this situation, no rotation matrix is needed. β_0 identifies the direction of the sliding velocity vector v_0 on the x plane, tilted by φ from xy plane, while v is the projected sliding velocity and β the projection of β_0 on the xy plane.](image-url)
A. Berardo and N.M. Pugno

A differentiable function with a defined periodicity in the form \(z = f(x, y) \), here called 2D roughness (Fig. 1b).

Thus, these surfaces are:

\[
z_1 = f_1(x, y) \\
z_2 = f_2(x, y)
\]

where the lower surface is identified by no. 1, while the upper is no. 2.

The analytical model assumes that the isotropic Coulomb friction law governs the local contact between the rough surfaces, already in relative motion, thus it considers only the dynamic friction force. These surfaces are assumed to be infinitely rigid, while a set of longitudinal springs, equally spaced and with the same stiffness, governs their elastic interaction (Fig. 1a).

It has been supposed that the springs are fixed half on the upper surface and slide on the lower, and the other half opposite to them, to consider the contributions of both the rough surfaces to the global coefficient of friction.

As a first approach we neglect adhesion, defining that the springs work only when compressed with the same longitudinal stiffness \(k_l \).

Firstly, we analyse the force equilibrium at point \(P (P \in z(x,y)) \) due to a single spring interaction (Fig. 1b-c) on the plane \(\pi \), tangent to the surface in \(P \):

\[
(x-x_p) \frac{\partial G}{\partial x} + (y-y_p) \frac{\partial G}{\partial y} + (z-z_p) \frac{\partial G}{\partial z} = 0
\]

\(G : f(x, y) - z = 0 \)

Assume the spring is fixed on the upper asperity (surface \(z_2 \)) and slides on the lower (surface \(z_1 \)); \(l_p \) is the spring length at rest: the actual spring length \(l \) depends on the asperities profile, thus, for point \(P \), its length is equal to:

\(l_p = z_2(x_p, y_p) - z_1(x_p, y_p) \)

Due to its length variation during the sliding, the single spring generates an elastic force, expressed as follows:

\(F_i(P) = (l_p - l)k_l \), in case of compression;
\(F_i(P) = 0 \), in case of elongation, since the tensile behaviour is neglected;

From the static equilibrium, \(N \) is the normal force acting on the \(\pi \) plane (Fig. 1c) and the tangential force is equal to \(T = \mu_uN \), where \(\mu_u \) is the local coefficient of friction (following the isotropic Coulomb law).

Supposing that the spring displacement \((l_p - l) \) is \(u \), the normal force on \(\pi \) is:

\[
N = ku \sqrt{\mu_u \tan \beta \cos \beta + \mu_l \tan \phi_l \cos^2 \beta - 1}
\]

\(\beta \) is the projected direction on the \(x'y' \) plane of the sliding velocity vector \(v_0 \) acting on the \(x \) plane, tilted by \(\phi_l \) from \(x'y' \) plane, \(\phi_l \) is the intersection between the tangent plane in \(P \) and the \(x'y' \) plane, as reported in Fig. 1c.

The denominator in Eq. (1) should be different from zero, leading to have \(\phi_l \neq 90^\circ \) and \(\mu_l \neq \cot \phi_l \) \(\forall P \in z(x, y) \). When \(F_z \) is a compressive force, \(ku \geq 0 \) and \(\mu_u \tan \phi_l \cos \beta + \mu_l \tan \phi_l \cos^2 \beta > 0 \). This means that \((l_p - l) \) is positive and that the local coefficient of friction \(\mu_l \) must be smaller than \(\cot \phi_l \). Thus, the more the material displays sharp roughness, the more the global friction coefficient must be small and in particular, for \(\phi \) equal to \(45^\circ \), \(\mu_l \) has to be minor than 1. From a physical point of view, Eq. (1) implies that the model is suitable for elastomers only when they show a smooth roughness, since they usually display dynamic coefficient of friction around 1-2 [40-43]. In addition, in case of sharp-shaped asperities \((\phi = 60^\circ \) or more), the global coefficient of friction \(\mu \) strongly increases and for \(\phi = 90^\circ \) tends to an infinite value. This condition can model the presence of interlocking when the asperities are sharp, since the friction force significantly grows, affecting the sliding and even stopping it. In the \(x'y' \) plane, from the equilibrium, the tangential forces are expressed in terms of the normal elastic force \(F_z(P) \):

\[
F_x = F_z \sqrt{1 + \tan^2 \phi_l \cos^2 \beta} + \mu_u \cos \beta = F_zH_l(\mu_u, \phi_l, \beta)
\]

\[
F_y = F_z \sqrt{1 + \tan^2 \phi_l \cos^2 \beta} - \mu_l \tan \phi_l \cos \beta = F_zH_l(\mu_u, \phi_l, \beta)
\]

Finally, to achieve the reaction forces in the global reference system (\(F_x \) and \(F_y \)), Eq. (4) is applied, where \(\alpha_l \) is the rotation of the local reference system in \(P \) with respect to the global system, while \(X \) and \(Y \) are the quantities to be fed back to the global reference system (i.e. the reaction forces):

\[
\begin{bmatrix}
X_P \\
Y_P
\end{bmatrix} =
\begin{bmatrix}
\cos \alpha_l & \sin \alpha_l \\
-\sin \alpha_l & \cos \alpha_l
\end{bmatrix}
\begin{bmatrix}
X' \\
Y'
\end{bmatrix}
\]

Consider now a certain number \(n \) of springs, which is acting on both asperities. For each spring, the previous equations can be adopted and the total normal force \(R_z \) will be equal to:

\[
R_z = \sum F_z^{(1)} + \sum F_z^{(2)} = R_z^{(1)} + R_z^{(2)}
\]

where \(R_z^{(1)} \) and \(R_z^{(2)} \) are the sum of all the normal forces acting on the lower surface and on the upper surface, respectively.

The same formulations are obtained for the tangential forces in both \(x \) and \(y \) directions \(R_x \) and \(R_y \):

\[
R_x^{(1)} = \sum F_x^{(1)}
\]

\[
R_x^{(2)} = \sum F_x^{(2)}
\]

From the previous relationships, in the case of no adhesion, the coefficients of friction \(\mu_x, \mu_y \) and the global coefficient of friction \(\mu \) are obtained as follows:

\[
\mu_x = \frac{R_x}{R_z}, \quad \mu_y = \frac{R_y}{R_z}, \quad \mu = \frac{R_x}{R_z}
\]

Following the Coulomb’s law, the tangential force is proportional to the normal force applied to the surface.

2.1. Surfaces with 1D roughness

We refer to this case when the surfaces are defined as functions of the only variable \(x \) and extruded along \(y \) direction, \(z = f(x) \) (Fig. 1d) and thus \(\phi_l \) is the inverse tangent of the function \(z(x) \) in \(P \), reported in Fig. 1d.

Following the previous steps for the 2D case, the force equilibrium at point \(P (P \in z(x)) \) due to the spring interaction is obtained referring to the tangent plane \(\pi \) in \(P \) (Fig. 1e), \(\beta \) is the projected direction of the sliding velocity vector on the \(xy \) plane and the tangential forces \(R_x \) and \(R_y \) could be expressed in the following forms:

\[
R_x^{(1)} = \sum F_x^{(1)}H_l(\mu_u, \phi_{1, \beta})
\]

\[
R_x^{(2)} = \sum F_x^{(2)}H_l(\mu_u, \phi_{2, \beta})
\]
\[R^{(2)} = \sum F_r^{(2)} H(\mu, \phi, \varphi, \beta) \] (13)

In Eqs. (10)-(13), the first part is the elastic contribution, which depends on functions \(z_1 \) and \(z_2 \), while the second part depends on one of the two asperities, the velocity orientation \(\beta \) and the local friction coefficient \(\mu_0 \).

2.2. Surfaces with 1D wedge asperities roughness

By adopting the surface profile as formed by tilted planes (saw tooth shape, Fig. 2), the expressions of the friction forces simplify. Since the average spring displacement is equal to \(\sum \Delta l_i / n \), the average normal (elastic) force on one tilted plane \(\pi \) is \(R^{(1)} = \frac{k}{n} \sum \Delta l_i = \frac{1}{n} \sum R^{(1)} \) (thanks to the same spring stiffness). When the whole asperity is considered, the normal elastic force \(R_n \) is the sum of the average elastic forces generated by the spring compression on each tilted plane, weighted by their area of competence by introducing \(\psi \) and \(\delta \) reported in Eq. (14). The coefficient \(1/2 \) remembers that the springs are fixed half on the upper and half on the lower surfaces.

\[R^{(1)} = \frac{1}{2} [1 + \psi^{(1)}] + \frac{1}{2} \frac{1}{1 + \delta^{(1)} - \psi^{(1)}} R^{(2)} + \frac{1}{2} + \frac{1}{1 + \delta^{(1)} - \psi^{(1)}} R^{(3)} + \frac{1}{2} + \frac{1}{1 + \delta^{(1)} - \psi^{(1)}} R^{(4)} \] (14)

\(R^{(1)}, R^{(2)}, R^{(3)} \) and\(R^{(4)} \) are the average normal forces, acting on the tilted plane by \(\phi_2, \phi_3, \phi_4 \) and \(\phi_5 \), respectively.

If \(\beta = 0 \) the sliding motion is only along the \(x \) direction, \(\mu_y = 0 \) and

\[\mu_x = \frac{\frac{1}{1 + \psi^{(1)}} R^{(1)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(2)}} R^{(2)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(3)}} H(\mu_0, \phi_2, \beta) + \frac{1}{1 + \psi^{(4)}} H(\mu_0, \phi_3, \beta)}{R_n} \]

\[= \frac{\frac{1}{1 + \psi^{(1)}} R^{(1)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(2)}} R^{(2)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(3)}} H(\mu_0, \phi_2, \beta) + \frac{1}{1 + \psi^{(4)}} H(\mu_0, \phi_3, \beta)}{R_n} \]

On the contrary, if \(\beta = 90^\circ \), \(\mu_x = 0 \) and

\[\mu_y = \frac{\frac{1}{1 + \psi^{(1)}} R^{(1)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(2)}} R^{(2)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(3)}} H(\mu_0, \phi_2, \beta) + \frac{1}{1 + \psi^{(4)}} H(\mu_0, \phi_3, \beta)}{R_n} \]

\[= \frac{\frac{1}{1 + \psi^{(1)}} R^{(1)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(2)}} R^{(2)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(3)}} H(\mu_0, \phi_2, \beta) + \frac{1}{1 + \psi^{(4)}} H(\mu_0, \phi_3, \beta)}{R_n} \]

Eqs (15) and (16) simplify when:

\begin{itemize}
 \item \(\varphi_1 = \varphi_2 = \varphi, \varphi_3 = \varphi_4 = 0 \) and \(\psi = \delta = 1 \) (Fig. 2a)
\end{itemize}

When \(\beta = 0 \), \(\mu_y = 0 \) and \(\mu_x \) becomes:

\[\mu_x = \frac{1}{1 + \psi^{(1)}} R^{(1)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(2)}} R^{(2)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(3)}} H(\mu_0, \phi_2, \beta) + \frac{1}{1 + \psi^{(4)}} H(\mu_0, \phi_3, \beta) \]

\[= \mu_0 \left(2 - \sin^2 \phi (1 + \mu_0^2) \right) \]

\[\frac{1}{2 (1 - \sin^2 \phi (1 + \mu_0^2))} \]

(17)

On the contrary, if \(\beta = 90^\circ \), \(\mu_x = 0 \) and

\[\mu_y = \frac{1}{2} \left(\frac{1}{1 + \psi^{(1)}} R^{(1)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(2)}} R^{(2)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(3)}} H(\mu_0, \phi_2, \beta) + \frac{1}{1 + \psi^{(4)}} H(\mu_0, \phi_3, \beta) \right) \]

\[= \frac{1}{2} \left(\frac{1}{1 + \psi^{(1)}} R^{(1)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(2)}} R^{(2)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(3)}} H(\mu_0, \phi_2, \beta) + \frac{1}{1 + \psi^{(4)}} H(\mu_0, \phi_3, \beta) \right) \]

(18)

\[\bullet \ varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 = \varphi \] and \(\psi = \delta = 1 \) (Fig. 2b)

In this particular configuration, the same expressions obtained in Ref. [14] are recovered.

If \(\beta = 0 \) the sliding motion occurs in \(x \) direction, \(\mu_y = 0 \) and:

\[\mu_x = \frac{1}{1 + \psi^{(1)}} R^{(1)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(2)}} R^{(2)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(3)}} H(\mu_0, \phi_2, \beta) + \frac{1}{1 + \psi^{(4)}} H(\mu_0, \phi_3, \beta) \]

\[= \frac{\mu_0}{1 - \sin^2 \phi (1 + \mu_0^2)} \]

(19)

On the contrary, if \(\beta = 90^\circ \), \(\mu_x = 0 \) and

\[\mu_y = \frac{1}{2} \left(\frac{1}{1 + \psi^{(1)}} R^{(1)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(2)}} R^{(2)} H(\mu_0, \phi_1, \beta) + \frac{1}{1 + \psi^{(3)}} H(\mu_0, \phi_2, \beta) + \frac{1}{1 + \psi^{(4)}} H(\mu_0, \phi_3, \beta) \right) \]

\[= \frac{\mu_0}{1 - \sin^2 \phi (1 + \mu_0^2)} \]

(20)

The coefficients found in Eqs (17) and (18) are similar to the friction coefficients described by Eqs (19) and (20), but smaller. This is reasonable, because when one profile has no roughness, there is a lower contribution to enhance the global friction coefficient.

3. Adhesion, wear and hierarchy

3.1. Introducing adhesion in the ALSFM

Many times adhesion is neglected, due to the presence of surface roughness [44,45], which can remove the adhesive forces. However, even if roughness could vanish the adhesion contribution, the area of real contact is still affected by its presence [6]. In addition, adhesion must be considered if the surface is characterized by a smooth roughness and a soft material.

The most common analytical models developed to study adhesive contacts are the Johnson-Kendall-Roberts (JKR) model and the Derjaguin-Muller-Toporov (DMT) model, with related studies [46-49]. JKR model assumes an elastic sphere in contact with a flat substrate with a free energy per unit area, which occurs when the contact is reached [6, 47]. Due to this energy, a contact spot with finite radius remains even if the external load is zero and this contact breaks at a critical pull-out force. The model gives the values of the contact force and the minimum contact radius at which a mechanical instability breaks the bond. If no free surface energy is present, the model collapses into the Hertz’s
The JKR model is accurate for soft materials and high surface energy, otherwise the DMT model must be applied, which has been formulated for adhesion between hard spheres [6].

Due to a wide interest in bioinspired applications, in the last decades there has been an increase in research on adhesion [50–57]. For example, further developments of the DMT theories have shown that adhesion generates an additional load around each asperity [33]. Other works investigated the adhesion hysteresis contribution to friction [58], adhesion between surfaces with smooth roughness [45], or simulating the gecko seta in contact with rough surfaces to obtain the efficiency of the attachment [52, 56].

In the ALSFM, adhesion is introduced by adding the contribution of tensile springs, which can elongate to a length \(l_t \) larger than the rest length \(l_0 \). Thus, when the applied normal load \(L \) decreases, some springs can elongate when the distance between the two sliding surfaces is bigger than the spring rest length, due to the shape of a rough profile (from Fig. 3 a to Fig. 3 b the load \(L \) is reduced). This generates a portion of the contact area subjected to tensile elastic forces, i.e. adhesion forces. Since the real area of contact determines the sliding friction force, adhesion, where present, can affect and modify the global frictional behaviour.

If no adhesion occurs, \(R_z = \sum F_z^c \) is equal to the normal load \(L \) (Fig. 3a), otherwise:

\[
L = \sum F_z^c + \sum F_z^t
\]

where \(\sum F_z^c > 0 \) is the sum of all the compressive forces and \(\sum F_z^t < 0 \) is the sum of the tensile forces, which have opposite directions.

Springs are defined with different compressive and tensile behaviours, respectively \(k_c \) and \(k_t = k_c/2 \). With this assumption, the model takes into account a larger compression resistance than the tensile one. For a single spring in point \(P \), the elastic force can be:

\[
F_z(P) = \begin{cases}
(l_0 - l_P)k_c & \text{in case of compression;} \\
-(l_0 - l_P)k_t & \text{in case of elongation;}
\end{cases}
\]

It is assumed that the stretched springs do not generate a friction force by sliding, so that, the apparent coefficient of friction is expressed as follows:

\[
\mu_a = \frac{R_{xy}^c}{L} = \frac{f(R_z^c)}{L}
\]

where \(R_{xy}^c \) indicates that the tangential force \(R_{xy} \) on the \(xy \) plane is generated only by the compressed springs and \(f \) indicates that \(R_{xy} \) is determined only by the \(R_z^c \) elastic forces. This implies that the apparent coefficient of friction increases due to the presence of adhesion.
of wear track observations with Scanning Electron Microscope or surface as a function of time and is modelled following the Archard's well-known Archard model. Different physical and chemical processes occur over different time scales. Several empirical models have been developed, from the well-known Archard's model to recent works as experimental studies of wear track observations with Scanning Electron Microscope or Atomic Force Microscope, or even numerical simulations to obtain the surface evolution during the sliding [6,18,33,59,60].

In this paper, wear is considered as a process affecting the contact surface as a function of time and is modelled following the Archard's wear law [18]:

\[
\frac{V}{S} = k \frac{L}{H}
\]

where V is the total wear (transferred) volume, S is the sliding distance, L is the normal load, H is the surface hardness and K is the wear coefficient.

It is assumed that the shape of the asperities is reduced from the initial amplitude until zero (i.e. flat) after a certain time \(T_w\), which is the estimated time to completely smooth the surfaces with a wear rate \(W = V/S\) and a constant applied load, which does not change during the wear process (Fig. 4).

In the presence of 2D roughness, defining \(S = vt\) and the wear rate \(W = V/S\), the total transferred volume is:

\[
\Delta V = \int_{x_0}^{x_f} \int_{y_0}^{y_f} z(x,y) \, dx \, dy - B \int_{x_0}^{x_f} \int_{y_0}^{y_f} z(x,y) \, dx \, dy = Wv \Delta t
\]

\[
B = 1 - \frac{Wv \Delta t}{\int_{x_0}^{x_f} \int_{y_0}^{y_f} z(x,y) \, dx \, dy}
\]

\[
B = \frac{1}{1 + \left(\frac{Wv \Delta t}{\int_{x_0}^{x_f} \int_{y_0}^{y_f} z(x,y) \, dx \, dy}\right)}
\]

The total wear volume can also be expressed as a function of the wedge asperity angles, finding the following relationship:

\[
\frac{d \tan \phi}{dt} = \frac{2Wv}{Z^2 Y}
\]

\[
\phi = A^* \sin \left(\frac{2\pi B^*}{\lambda_x}\right) + \sin \left(\frac{2\pi C}{\lambda_y}\right)
\]

3.2. The effect of wear in the ALSFM

Among the various tribological phenomena related to sliding friction, one of the most significant is wear. As for friction, wear involves different physical and chemical processes occurring over different time and length scales. Several empirical models have been developed, from the well-known Archard’s model to recent works as experimental studies of wear track observations with Scanning Electron Microscope or Atomic Force Microscope, or even numerical simulations to obtain the surface evolution during the sliding [6,18,33,59,60].

In this paper, wear is considered as a process affecting the contact surface as a function of time and is modelled following the Archard’s wear law [18]:

\[
\frac{V}{S} = k \frac{L}{H}
\]

where V is the total wear (transferred) volume, S is the sliding distance, L is the normal load, H is the surface hardness and K is the wear coefficient.

It is assumed that the shape of the asperities is reduced from the initial amplitude until zero (i.e. flat) after a certain time \(T_w\), which is the estimated time to completely smooth the surfaces with a wear rate \(W = V/S\) and a constant applied load, which does not change during the wear process (Fig. 4).

In the presence of 2D roughness, defining \(S = vt\) and the wear rate \(W = V/S\), the total transferred volume is:

\[
\Delta V = \int_{x_0}^{x_f} \int_{y_0}^{y_f} z(x,y) \, dx \, dy - B \int_{x_0}^{x_f} \int_{y_0}^{y_f} z(x,y) \, dx \, dy = Wv \Delta t
\]

\[
B = 1 - \frac{Wv \Delta t}{\int_{x_0}^{x_f} \int_{y_0}^{y_f} z(x,y) \, dx \, dy}
\]

\[
B = \frac{1}{1 + \left(\frac{Wv \Delta t}{\int_{x_0}^{x_f} \int_{y_0}^{y_f} z(x,y) \, dx \, dy}\right)}
\]

The total wear volume can also be expressed as a function of the wedge asperity angles, finding the following relationship:

\[
\frac{d \tan \phi}{dt} = \frac{2Wv}{Z^2 Y}
\]

\[
\phi = A^* \sin \left(\frac{2\pi B^*}{\lambda_x}\right) + \sin \left(\frac{2\pi C}{\lambda_y}\right)
\]

Where A, B and C are the coefficients that modulate the shape of the surfaces, while a, b and c depend on the level of roughness. In these studies it has been assumed that \(A = B = C\) and \(b = c = (n-i)\) while \(a = -(n-i)\), with \(n\) number of levels, \(i\) number of the actual level (\(i = 1\) is for the...
innermost, and then it increases until \(n \).

At the \(i \)-level, with \(\mu_i \) as the local coefficient of friction:

\[
\mu_i = f_i(\mu_{i-1}, z_1, z_2, \beta) = \gamma_i f_i(\mu_{i-1}, \mu_{i-1}, \mu_{i-1}, \beta)
\]

\[
F_x = F_z \sin \phi + \tan^2 \phi P \cos^2 \beta = F_z H_x(\mu_{i-1}, \phi, \beta)
\]

\[
F_y = F_z \mu_{i-1} \sin \beta + \tan^2 \phi P \cos^2 \beta = F_z H_y(\mu_{i-1}, \phi, \beta)
\]

\[
F_z = K_i u
\]

In particular, in the presence of 1D wedge asperities, if \(\beta = 90^\circ \) these expressions can be simplified into:

\[
\mu_n = \mu_0 \left(\frac{1}{\cos \phi} + 1 \right)^n \quad \phi_1 = \phi_2 = \phi_3 = \phi_4 = 0
\]

\[
\mu_n = \mu_0 \frac{1}{\cos \phi} \quad \phi_1 = \phi_2 = \phi_3 = \phi_4
\]

3.4. Coupling the effect of hierarchy and wear

In the work of Whitehouse and Archard in 1970 [17], it was found that from the profile of a rough surface after a single passage of a lubricated slider, the fine roughness (i.e., the roughness associated to the smaller levels) was removed, while the main roughness was preserved. Following the concept of such experiments, the effect of hierarchy is coupled with wear mechanisms, by assuming that the first consumed level is the innermost one. When its roughness is removed, the second begins to be subjected to wear and the coefficient of friction of the innermost level tends to its local coefficient of friction \(\mu_0 \), followed by the others until the external level is worn:

![Fig. 5. How to model different levels of roughness.](image)

![Fig. 6. a) Coefficient of friction of the six case studies reported in the box in the presence of two wedge asperity surfaces. These coefficients are calculated by assuming different direction of sliding \(\beta \). b) Coefficient of friction of the six case studies reported in the box for friction between 1D general rough surfaces, by assuming different direction of sliding \(\beta \). \(\mu_0 \) is set equal to 0.3.](image)
After a time equal to $T_w (B = 0, t_0 = 0)$, the global coefficient of friction of a certain level i is reduced to its local coefficient of friction μ_i and the total number of hierarchical levels decreases from n to $n-1$.

In the presence of 2D roughness, the time needed to wear away a certain level i is:

$$T_{w,i} = \int_{x_0}^{x_0 + N'} f_x, y f_{x_0}, y_0 \, dz (x, y) \, dxdy$$

obtained from the expression of the reduction coefficient B, when the latter is equal to zero.

4. Results and discussion

Referring to the ALSFM, results for 1D and 2D roughness are shown in Fig. 6 and Fig. 7, respectively, where values of μ are normalized by μ_0, the local coefficient of friction used in the isotropic Coulomb friction model. Six different roughness configurations are analysed by varying the sliding direction β, which strongly modifies non-linearly the coefficient of friction μ. In Fig. 6, generic 1D roughness (where ϕ_1, ϕ_2, \ldots are the average slopes of the surfaces z_1 and z_2) has globally a higher friction coefficient than the equivalent wedge asperities. The largest coefficient of friction is reached when both the surfaces are rough and, in particular, when the first slope is greater than the following, which is the case of asymmetrical roughness (red stars in Fig. 6a-b) with respect to the rough-flat surface contacts. When β tends to 90°, some reported cases tend to the same result, since for $\phi_1 = \phi_3 < \phi_2 = \phi_4$.

Fig. 7. Variation of the coefficient of friction between two 2D rough surfaces with respect to the direction of sliding β. The upper and lower surfaces are the same, with symmetric roughness, thus the coefficient of friction μ varies between 0° and 90°. The blue line shows how the coefficient of friction changes between 0° and 90°, with a step $\Delta \beta$ equal to 5°, while the red line is the friction coefficient obtained for smaller steps. μ_0 is set equal to 0.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Changes in the friction coefficient by varying both wavelength in x and y directions (from $\lambda = \pi$ to $\lambda = 3\pi$) and sliding direction β from 0° (a) then 45° (c) and finally 90° (b). As expected, a and b are symmetrical and show the maximum coefficient of friction for the smallest wavelengths and this trend is preserved in the direction of sliding. Instead, the minimum value is reached for the biggest wavelengths. With β equal to 45°, the coefficient of friction is symmetrical with respect to the middle values. μ_0 is set equal to 0.3.
\(\varphi \) the sliding configuration is the same when \(\beta = 90^\circ \). The same occurs for \(\varphi_1 > \varphi_2, \varphi_3 = \varphi_4 = 0 \) and \(\varphi_1 < \varphi_2, \varphi_3 = \varphi_4 = 0 \), where the roughness asymmetry becomes negligible when the sliding is along the \(y \) direction.

Referring to 2D roughness (Fig. 7), when \(z_1 \) and \(z_2 \) are equal and symmetric, the coefficient of friction on both along \(x \) and \(y \) directions is the same if one surface is sliding with \(\beta \) equal to \(0^\circ \) or \(\beta \) equal to \(90^\circ \), as it was expected. In addition, in this situation, the coefficient of friction does not vary as much as it does in the 1D case with respect to the sliding direction. This is due to the different shape of the surfaces, where the succession of summits and valleys both along \(x \) and \(y \) directions generates smaller frictional forces and thus the coefficient of global friction appears to be almost constant with respect to \(\beta \).

More changes may occur if the wavelength of the asperities is modified (Fig. 8). The coefficient of friction can increase or decrease by considering several combinations of wavelength in \(x \) and \(y \) directions, respectively \(\lambda_x \) and \(\lambda_y \). Globally, 25 combinations are reported, varying the sliding direction \(\beta \) from \(0^\circ \) (Fig. 8a), \(45^\circ \) (Fig. 8c) to \(90^\circ \) (Fig. 8b).

Fig. 8a and b are symmetrical and display the maximum coefficient of friction for the smallest wavelengths (\(\lambda_x = \lambda_y = \pi \)). In addition, the bigger coefficient of friction is reached if the smaller wavelength is the one in the direction of sliding. For example, in Fig. 8a, when \(\lambda_y = \pi \) and the direction of sliding is along the \(x \) axis (\(\beta = 0^\circ \)) the bigger coefficient of friction is reached and appears to be slightly affected by variations in \(\lambda_x \), while varies significantly by changing \(\lambda_y \). Opposite results are observed in Fig. 8b, due to \(\beta = 90^\circ \).

These insights may suggest that the wavelength that mainly governs the coefficient of friction is the one in the same direction as \(\beta \), because the asperities that the surfaces are facing are predominant in influencing the coefficient of friction. The increase in wavelength perpendicular to the motion slightly affects the values of \(\mu \), reaching the minimum value for both the largest wavelengths. If the direction of sliding \(\beta \) is equal to \(45^\circ \), the coefficient of friction shows a symmetrical behaviour with respect to the diagonal middle values. This is reasonable because both the wavelengths play the same role in enhancing or decreasing the global coefficient of friction.

In order to validate the proposed 2D-ALSFM we compared its predictions with experimental data taken from Ref. [21], where three rough steel pins were tested against a flat ice surface. The pins profiles are extracted from the profilometer, reported in table a). A symmetric surface morphology has been assumed in both \(x \) and \(y \) directions, and since the experimental sliding direction \(\beta \) is random, we considered the two extreme situations found in Fig. 7, i.e., \(\beta = 0^\circ \) and \(\beta = 30^\circ \). As inferred before, for 2D symmetric profiles the coefficient of friction is more affected by the profile morphology rather than the sliding direction (circle- and diamond-shaped markers for \(\beta = 0^\circ \) and \(30^\circ \) respectively). Furthermore, we found a good agreement between the experiments and the model predictions, where the contribution of the surface roughness is clearly shown (Fig. 9c).

When adhesion is introduced (Fig. 10), several situations may occur: if all the springs are compressed (high loads), the sum of all the elastic forces balance the applied normal load \(L \). Then, if the load decreases, some springs may be elongated generating tensile forces, which are balanced by the remaining compressed springs. In Fig. 10a for 1D roughness the variation in time (normalized by the period of the functions \(\lambda \) of tensile springs (\(n_t \)) with respect to the total number of springs (\(n \)) is shown, from blue to red curves. The more the load reduces, the more the springs are elongated, until \(L = 0 \), in which the sum of the compression forces is equal in modulus to the sum of the tensile forces (opposite direction). By applying a negative load (tensile force), some springs could still be compressed (negative part of the graph in Fig. 10b).

When there is no spring elongation, the tangential force \(R_{xy} \) is linearly dependent on the normal force \(R_n \), while if some springs start to elongate, the behaviour becomes non linear, due to adhesion effects. Moreover, adhesion appears to have a significant role only for small normal loads, as also reported in experimental works e.g., Ref. [40].

The presence of adhesion generates an (apparent) enhancement of the friction coefficient (or even a negative value, when the load has the opposite direction), as reported by Eq. (22).

When the surfaces are described by the same function, so that \(z(x) = z(x) \) and the sliding direction \(\beta \) is equal to \(90^\circ \), the springs do not modify their length along the sliding. In particular, if they are in phase at \(t = 0 \), adhesion does not influence the frictional behaviour (orange curve reported in Fig. 10b).

The anisotropic roughness clearly influences the frictional response, as the curves in Fig. 10b show and the sliding direction that mainly contributes in enhancing the effects of adhesion is \(\beta = 0^\circ \).

The effect of adhesion is different if we assume a 2D roughness with sinusoidal function in both \(x \) and \(y \) directions (Fig. 10c-d). By displaying the tangential force \(R_{xy} \) with respect to the applied normal load \(L \) it is evident that there is no significant dependence on the direction of sliding. Furthermore, adhesion equally affects \(x \) and \(y \) directions of sliding (blue line and yellow dashed line). Fig. 10d shows an enlargement on the graph close to zero. When the load \(L \) is equal to zero, a frictional force is still noticeable, due to some springs that are compressed and thus generate friction.

In Fig. 11 the effect of abrasive wear is introduced and discussed. As stated previously, 2D-ALSFM predictions for the global coefficient of friction are slightly affected by the direction of sliding, especially for symmetric asperities. This is clear in Fig. 11c, where the first point of

Fig. 9. Comparison of the 2D model with experimental data taken from Ref. [21]. a) The pin surface are modelled assuming the average roughness \(R_a \) and the root mean square of the slope profile \(R_q \) obtained from the profilometer, reported in table b). c) Comparison between the experiments (circle-shaped markers) and the 2D-ALSFM (square-shaped and diamond-shaped markers).
each curve represents the global coefficient of friction (normalized by the local coefficient) without wear effects. These values are similar and, by adopting the same local coefficient of friction μ_0, the results are equal to the ones reported in Fig. 7. Then, when the wear mechanism starts modifying the shape of surfaces, the coefficient of friction decreases non-linearly, until it reaches the value of the local coefficient μ_0, meaning
that the surfaces became flat.

By supposing a certain wear rate W (order of magnitude 10^{-3} mm3/m, as reported in Ref. [59] for metals), after a time equal to $T \approx W$, the surfaces become flat and the friction coefficient tends to the local friction coefficient μ_0. The influence of the sliding direction β is more evident by comparing Fig. 11a-b with Fig. 11c.

Thanks to the introduction of hierarchy, the H-ASLFM firstly computes the friction coefficient of the inner level (on the smallest scale), and then the coefficient of the others. Changing a level means hypothetically changing the scale of the problem (we have assumed that the physics and the geometry of the problem are preserved). As in the previous cases, these results are obtained for distinct values of β, for both 2D and 1D roughness (wedge asperities or generic shape).

Hierarchy enhances non-linearly the friction coefficient and the coefficient of each level depends on the previous ones. By defining hierarchical sublevels in both upper and lower surfaces, the friction coefficient becomes more sensitive to changes in the sliding direction. This is particularly evident in the case of wedge asperities, where the friction coefficient can vary significantly with respect to the sliding direction.

Fig. 12. Hierarchical friction. The theoretical prediction, which is the exact solution in case of wedge asperities and $\beta = 90^\circ$, is reported (red curves) for all the cases. a) Variation of the friction coefficient between two sinusoidal hierarchical asperities. Three different directions of sliding (β) are considered. b) Variation of the friction coefficient between a sinusoidal hierarchical surface and a flat surface. Three different directions of sliding (β) are reported. c) Variation of the friction coefficient between one hierarchical wedge asperities and a flat surface. Three directions of sliding (β) have been reported. d) Variation of the friction coefficient between hierarchical wedge asperities. Three different directions of sliding (β) have been considered. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 13. Hierarchical friction for 2D roughness. a) Variation of the friction coefficient between two symmetric self-similar hierarchical asperities. Three different directions of sliding (β) are considered. b) Variation of the friction coefficient between two asymmetric self-similar hierarchical asperities. Two different directions of sliding (β) have been considered, compared with two different asymmetric profiles. If the asperities are not symmetric, the frictional response varies in a more significant way with respect to β.
A. Berardo and N.M. Pugno

5. Conclusions

We proposed a theoretical model for anisotropic dynamic friction, which considers the interactions and effects of two rough surfaces in contact, during their relative sliding. By developing the analytical model for 1D and 2D surface roughness (the Anisotropic Lattice Spring Friction Model), the parameters that influence the frictional behaviour of the model are the local friction coefficient, the direction of sliding, the amplitude and wavelength of the surfaces. The friction coefficient strongly depends on the roughness of the surfaces involved and on the sliding direction β. Generic 1D roughness displays higher friction coefficient rather than the saw tooth shape, with a reduction up to 40% moving from $\beta = 0^\circ$ to 90°. By introducing 2D roughness, the results of this investigation highlight that symmetrical surfaces seem to be more influenced by their shape, rather than the direction of sliding, while with non-symmetrical surfaces (different wavelength in the x and y directions), the sliding direction affects up to 30–40% the dynamic friction coefficient when β varies from 0° to 90°. We also validated the model predictions with some experimental results taken from a previous work.

Then, adhesion is introduced by imposing that the springs governing the interaction at the atomistic scale can be tensile forces. This aspect causes an increase in both the full compression force acting on the asperities and the apparent friction coefficient. Results show that, when adhesion affects the sliding, a tangential force is still present even if there is no normal load.

Wear is adopted as a process that reduces the friction coefficient in time and smoothes the asperities. The effect is more evident if the sliding is along the profile with sharper roughness (e.g., β equal to 0° for 1D roughness). If hierarchical self-similar levels are present, they contribute to enhancing the friction coefficient in a non-linear way. The effect of wear in the presence of hierarchical surfaces provides the model with the prediction of the friction coefficient, which decreases in time due to sliding wear.

This being the case, the present work could serve as a guide for future investigations to analyse more deeply the effects of surface topology and hierarchy in the friction response of multilevel surfaces and for the design of their tribological properties.

References

