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• Linear Elastic Fracture Mechanics (LEFM) 
Stress-intensity factor 

Energy release rate 

Fracture toughness 

Size-effect on fracture strength 

• Quantized Fracture Mechanics (QFM) 
Strength of graphene (and related materials) 

• Bending 
Flexibility 

Bending stiffness 

Elastic line equation 

Elastic plate equation 
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Exercises by me 

1. Apply QFM for deriving the strength of realistic thus defective 

graphene (and related 2D materials); 

2. Apply LEFM for deriving the peeling force of graphene (and 

related 2D materials). 

Exercises by you 

1. Apply LEFM for measuring the fracture toughness of a sheet 

of paper; 

2. Apply the Bending theory for calculating the maximal 

curvature before fracture. 
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Stretching 
Fiber under tension 

A 𝑙 

F 

F 

∆𝑙

2
 

∆𝑙

2
 

Stress:  𝜎 =
𝐹

𝐴
 

Strain:  𝜀 =
∆𝑙

𝑙
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Stress-strain curve: 

Signature of the material and main tool for deriving its 

mechanical properties 

σ 

ε 

A 

C 

D B 

x 

x 
x 

x = failure 

 

If the curve is monotonic, a 

force-control is sufficient. 

 

You can derive AB in 

displacement control, CD in 

crack-opening. The dashed 

area is the kinetic energy 

released per unit volume 

under displacement control. 
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Mechanical properties 
σ 

ε 

x 

𝜎𝑚𝑎𝑥 

𝜀𝑢 

1 

𝐸 
𝐸 

𝑉
 

𝑑𝜎

𝑑𝜀
 
0

≡ 𝐸 ≡ Young’s modulus 

 

𝜎𝑚𝑎𝑥 = maximum stress ≡ Strength 

 

𝜀𝑢 = ultimate strain 

 𝜎𝑑𝜀 =
𝐸 

𝑉
=

𝜀𝑢

0
  Energy dissipated per unit volume or Toughness modulus.  

𝐸 =  𝐹𝑑𝑙              𝑉 = 𝐴𝑙 

𝐸 

𝑉
=  

𝐹

𝐴

𝑑𝑙

𝑙
=  𝜎𝑑𝜀 

The toughness modulus is a material 

property only for ductile materials. 
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The post-critical behaviour is size-dependent especially for brittle 

materials.   

σ 

ε 

𝑙 
0 

∞ 

𝑙 → 0    ductile 

𝑙 → ∞  brittle 

Size-effects 
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𝐸 = 𝐺𝑐𝐴 

 

 𝐺𝑐 ≡ fracture energy or energy 

dissipated per unit area 

 𝜎𝑑𝜀 ≡
𝐸 

𝑉
=

𝐺𝑐𝐴 

𝑙𝐴
=

𝐺𝑐 

𝑙
 

For brittle materials  
𝐸 

𝑉
  has no meaning: instead of the toughness modulus we 

have to use the fracture energy. 

Fracture 

The reality is in between: energy dissipated on a fractal domain: 

𝐸 

𝑉
∝ 𝑙 𝐷−3                    𝑙 = 𝑉

3
 

D  is the fractal exponent, 2 ≤ 𝐷 ≤ 3 
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Fracture Mechanics 

σ 

𝜎𝑡𝑖𝑝 

2a r 

 𝐾𝐼 ≡ Stress intensity factor 

𝜎𝑡𝑖𝑝~
𝐾𝐼

2𝜋𝑟
 

constant 

Elastic solution is singular: 

We cannot say 

 

𝜎𝑓: 𝜎𝑡𝑖𝑝 = 𝜎𝑚𝑎𝑥 

 

𝜎𝑓 stress at fracture 
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Linear Elastic Fracture Mechanics 

(LEFM) 
Griffith’s approach 

𝐺 = −
𝑑𝑊

𝑑𝐴
                        𝑊 = 𝐸 − 𝐿 

Energy release 

rate Crack surface 

area 

Total potential 

energy 

Stored elastic 

energy 

External work 

Crack propagation criterion: 

𝑮 = 𝑮𝑪                          𝐺𝑐 ≡ fracture energy  

𝐺 =
𝐾𝐼

𝐸
        Elastic solution 

𝐾𝐼 only for a function of external load and geometry 

𝑲𝑰 = 𝑲𝑰𝑪 𝐾𝐼𝐶 = 𝐺𝐶𝐸          Fracture toughness    
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𝐾𝐼 values reported in stress-intensity factor Handbooks  

E.g., infinite plate (i.e. width ≫ crack length ~ graphene) 

𝐾𝐼 = 𝜎 𝜋𝑎 

Strength of graphene with a crack of length 2𝑎 

𝐾𝐼 = 𝜎 𝜋𝑎 = 𝐾𝐼𝐶 

𝜎𝑓 =
𝐾𝐼𝐶

𝜋𝑎
 

Assuming statistically 𝑎 ∝ 𝑙 ≡ structural size: 

𝜎𝑓 ∝ 𝑙 −
1

2  

 

Size effect on a fracture strength              larger is weaker 

                                                                  problem of the scaling up…. 
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Paradox      𝜎𝑓 → ∞    𝑎 → 0 

With graphene pioneer Rod Ruoff we invented Quantized Fracture 

Mechanics (2004). 

The hypothesis of the continuous crack growth is removed: existence of 

fracture quanta due to the discrete nature of matter. 
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Related papers: 

N. M. Pugno, “Dynamic quantized fracture mechanics”, Int. J. Fract, 2006  

N. M. Pugno, “New quantized failure criteria: application to nanotubes and 

nanowires”, Int. J. Fract, 2006  
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Quantized Fracture Mechanics (QFM) 

𝐺∗ = −
∆𝑊

∆𝐴
 

Quantized energy 

release rate 

∆𝐴 = fracture quantum of surface area = 𝑞𝑡  

Plate 

thickness 

Fracture 

quantum 

of length 

𝑮∗ = 𝑮𝑪 

𝐺 = −
𝑑𝑊

𝑑𝐴
                 ∆𝑊 = −  𝐺𝑑𝐴 = −  

𝐾𝐼
2

𝐸
𝑑𝐴 

𝐺∗ = −
∆𝑊

∆𝐴
=

 
𝐾𝐼

2

𝐸 𝑑𝐴 

∆𝐴
                 𝐺∗ = 𝐺𝑐                    

1

∆𝐴
 

𝐾𝐼
2

𝐸
𝑑𝐴 =

𝐾𝐼𝐶
2

𝐸
 

 

Quantized stress-intensity factor (generalized):       𝐾𝐼
∗ =

1

∆𝐴
 𝐾𝐼

2 𝑑𝐴 = 𝐾𝐼𝐶 
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Monolayer graphene and examples 

Tennis racket made of 

graphene (Head ©) 

Young’s modulus ≡ 𝐸 = 1 TPa 

Intrinsic strength 𝜎𝑖𝑛𝑡 = 130 GPa 

Ultimate strain 𝜀𝑢 = 25 %  

 

C. Lee, X. Wei, J.W. Kysar, J. Hone, 

“Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, 2008 : 

Monolayer graphene hanging on a 

silicon substrate (scale bar: 50µm)  
Tensile test on macro samples 

of graphene composites   
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Carbon nanotubes 

The MWCNTs breaks in the outermost layer 

(“sword-in-sheath” failure), 

Young’s modulus ≡ 𝐸 =250 to 950 GPa 

Tensile strength σ = 11 to 63 GPa 

Ultimate strain 𝜀𝑢 = 12 %  

 

Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, Rodney S. Ruoff, “Strength and 

Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load”, Science, 2000: 

Multiwalled carbon nanotubes (MWCNTs) 

The singlewalled carbon nanotubes 

(SWCNTs) presents: 

Young’s modulus ≡ 𝐸 =1000 GPa 

Tensile strength σ = 300 GPa 

Ultimate strain 𝜀𝑢 = 30 %  
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Exercise 1 

E.g., infinite plate 

𝐾𝐼 = 𝜎 𝜋𝑎 

 

𝐾𝐼
∗ =

1

𝑞𝑡
 𝜎2𝜋𝑎𝑡 𝑑𝑎

𝑎+𝑞

𝑎

= 𝜎
𝜋

2𝑞
𝑎 + 𝑞 2 − 𝑎2 = 𝜎 𝜋 𝑎 +

𝑞

2
 

 

Strength of graphene  𝐾𝐼
∗ = 𝐾𝐼𝐶 

 

𝜎𝑓 =
𝐾𝐼𝐶

𝜋 𝑎 +
𝑞
2

           𝑎 ↑    𝜎𝑓 ↓ 

 

Unstable crack growth  
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𝑞 → 0     Correspondence Principle     𝑄𝐹𝑀 → 𝐿𝐸𝐹𝑀 

 

𝑎 → 0      𝜎𝑓 = 𝜎𝑖𝑑𝑒𝑎𝑙 

 

𝜎𝑖𝑑𝑒𝑎𝑙 =
𝐾𝐼𝐶

𝜋
𝑞
2

  ⟹   𝑞 =
2

𝜋

𝐾𝐼𝐶
2

𝜎𝑖𝑑𝑒𝑎𝑙
2 

𝑞 

𝜎𝑖𝑑𝑒𝑎𝑙 ~ 100 GPa 

𝜎𝑓 =
𝐾𝐼𝐶

𝜋 𝑎 +
𝑞
2

 

𝐾𝐼𝐶  ~ 3MPa m 

(QFM 2004) 

Very close to predictions 

by MD and DFT 

Very close to experimental 

measurement (2014) 

𝜎𝑖𝑑𝑒𝑎𝑙 ~ 
𝐸

10
 𝐸~1 TPa 

P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P. E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, P. M. Ajayan, T.   

Zhu & J. Lou, Fracture toughness of graphene, Nature, 2014 
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Exercise 2 
Peeling of graphene 

𝜃 

𝛿 

𝑙 

𝐹 

𝐸 → ∞            𝐸 → 0 

 

𝛿 = 𝑙 − 𝑙 cos 𝜃 

𝐺 = −
𝑑𝑊

𝑑𝐴
=  

𝑑𝐿

𝑑𝐴
       𝐿 = 𝐹𝑑         𝑑𝐴 = 𝑏𝑑𝑙        

𝐺 =
𝑑

𝑏𝑑𝑙
𝐹𝑙 1 − cos 𝜃 =

𝐹 1 − cos 𝜃

𝑏
 

𝐺 = 𝐺𝐶     ⟹      𝐹𝐶 =
𝑏𝐺𝐶

1 − cos 𝜃
 

𝐹𝐶  strongly dependent on 𝜃  

N. M. Pugno, “The theory of multiple peeling”, Int. J. Fract, 2011  
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Exercise 3 

Apply LEFM for measuring the fracture 

toughness of a sheet of paper with a 

crack of a certain length in the middle: 
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Bending theory 
Bending of beams 

ℎ 

𝑏 

𝑑𝑧 

𝑅𝑋 

𝑑𝜑𝑋 

𝑑𝑧 

𝑀𝑥 𝑀𝑥 

Bending Moment 

𝑑𝜑𝑋

2
 

𝑧 
𝑦 

𝜀𝑑𝑧

2
≅ 𝑦

𝑑𝜑𝑋

2
 

𝜎𝑧 =
𝑀𝑥

𝐼𝑥
𝑦 ≅ 𝐾𝑦        𝑀𝑥 =  𝜎𝑧𝑦𝑏𝑑𝑦

ℎ
2

−
ℎ
2

= 𝐾𝐼𝑥 

 

𝜒𝑥 =
1

𝑅𝑥
=

𝑑𝜑𝑥

𝑑𝑧
=

𝜀𝑧

𝑦
=

𝜎𝑧

𝐸𝑦
=

𝑀𝑥

𝐼𝑥𝐸
 

 

𝜒𝑚𝑎𝑥 =
𝜀𝑧,𝑚𝑎𝑥

ℎ 2 
 

Moment of inertia 

𝐼𝑥 =
𝑏ℎ3

12
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Exercise 4 
Derive the maximal graphene curvature. 

 

For graphene ℎ = 𝑡 ≅ 0.34 𝑛𝑚  → 𝜒𝑚𝑎𝑥huge → flexibility is more a structural 

than a material property 

𝜑𝑥 = −
𝑑𝑣

𝑑𝑧
 ⟹ 

𝑑2𝑣

𝑑𝑧2 = −
𝑀𝑥

𝐼𝑥𝐸
 

𝑑𝑧 

M M 

q T T 

N N 

𝑑𝑇

𝑑𝑧
= −𝑞 

 
𝑑𝑀

𝑑𝑧
= 𝑇 

⟹ 
𝑑4𝑣

𝑑𝑧4 =
𝑞

𝐼𝑥𝐸
 

Elastic line equation 

Load per unit length 

For plates:      𝛻4𝑊 =
𝑞

𝐷
 

Elastic plane equation 

Load per unit area 

Bending stiffness 𝐷 =
𝐸𝑡3

12 1 − 𝜈2  


