Outline

• Stretching
 Stress
 Strain
 \(\text{Stress-Strain curve}\)

• Mechanical Properties
 Young’s modulus
 Strength
 Ultimate strain
 Toughness modulus

• Size effects on energy dissipated
• Linear Elastic Fracture Mechanics (LEFM)
 Stress-intensity factor
 Energy release rate
 Fracture toughness
 Size-effect on fracture strength

• Quantized Fracture Mechanics (QFM)
 Strength of graphene (and related materials)

• Bending
 Flexibility
 Bending stiffness
 Elastic line equation
 Elastic plate equation
Exercises by me

1. Apply QFM for deriving the strength of realistic thus defective graphene (and related 2D materials);
2. Apply LEFM for deriving the peeling force of graphene (and related 2D materials).

Exercises by you

1. Apply LEFM for measuring the fracture toughness of a sheet of paper;
2. Apply the Bending theory for calculating the maximal curvature before fracture.
Stretches

Fiber under tension

Stress: \(\sigma = \frac{F}{A} \)

Strain: \(\varepsilon = \frac{\Delta l}{l} \)
Stress-strain curve:

Signature of the material and main tool for deriving its mechanical properties

\[\sigma \]
\[\varepsilon \]

\[A \] \[B \] \[C \] \[D \]

\[x = \text{failure} \]

If the curve is monotonic, a force-control is sufficient.

You can derive \(\widehat{AB} \) in displacement control, \(\widehat{CD} \) in crack-opening. The dashed area is the kinetic energy released per unit volume under displacement control.
Mechanical properties

\[\frac{d\sigma}{d\varepsilon} \bigg|_0 \equiv E \equiv \text{Young's modulus} \]

\[\sigma_{\text{max}} = \text{maximum stress} \equiv \text{Strength} \]

\[\varepsilon_u = \text{ultimate strain} \]

\[\int_0^{\varepsilon_u} \sigma d\varepsilon = \frac{\bar{E}}{V} = \text{Energy dissipated per unit volume or Toughness modulus.} \]

\[\bar{E} = \int F \, dl \quad \quad V = Al \]

\[\frac{\bar{E}}{V} = \int \frac{F \, dl}{A \, l} = \int \sigma d\varepsilon \]

The toughness modulus is a material property only for ductile materials.
Size-effects

The post-critical behaviour is size-dependent especially for brittle materials.

\[l \to 0 \quad \text{ductile} \]

\[l \to \infty \quad \text{brittle} \]
For brittle materials $\frac{\bar{E}}{V}$ has no meaning: instead of the toughness modulus we have to use the fracture energy.

\[
\bar{E} = G_c A
\]

$G_c \equiv$ fracture energy or energy dissipated per unit area

\[
\int \sigma d\varepsilon \equiv \frac{\bar{E}}{V} = \frac{G_c A}{lA} = \frac{G_c}{l}
\]

The reality is in between: energy dissipated on a fractal domain:

\[
\frac{\bar{E}}{V} \propto \bar{l}^{D-3} \quad \bar{l} = \frac{3}{\sqrt{V}}
\]

D is the fractal exponent, $2 \leq D \leq 3$
Fracture Mechanics

\[\sigma_{\text{tip}} \sim \frac{K_I}{\sqrt{2\pi r}} \]

\(K_I \equiv \text{Stress intensity factor} \)

Elastic solution is singular:
We cannot say
\[\sigma_f: \sigma_{\text{tip}} = \sigma_{\text{max}} \]

\(\sigma_f \) stress at fracture
Linear Elastic Fracture Mechanics (LEFM)

Griffith’s approach

\[G = -\frac{dW}{dA} \]

Energy release rate

\[W = \bar{E} - L \]

Total potential energy

Crack surface area

External work

Stored elastic energy

Crack propagation criterion:

\[G = G_c \]

\[G = \frac{K_I}{E} \]

Elastic solution

\[K_I = K_{IC} \]

Fracture toughness

\[K_{IC} = \sqrt{G_c E} \]

\(G_c \equiv \) fracture energy

\(K_I \) only for a function of external load and geometry
K_I values reported in stress-intensity factor Handbooks

E.g., infinite plate (i.e. width \gg crack length \sim graphene)

$$K_I = \sigma \sqrt{\pi a}$$

Strength of graphene with a crack of length $2a$

$$K_I = \sigma \sqrt{\pi a} = K_{IC}$$

$$\sigma_f = \frac{K_{IC}}{\sqrt{\pi a}}$$

Assuming statistically $a \propto \tilde{l} \equiv$ structural size:

$$\sigma_f \propto \tilde{l}^{-1/2}$$

Size effect on a fracture strength \implies larger is weaker

problem of the scaling up….
With graphene pioneer Rod Ruoff we invented Quantized Fracture Mechanics (2004). The hypothesis of the continuous crack growth is removed: existence of fracture quanta due to the discrete nature of matter.
Related papers:

Quantized Fracture Mechanics (QFM)

\[G^* = -\frac{\Delta W}{\Delta A} \]

Quantized energy release rate

\[\Delta A = \text{fracture quantum of surface area} = qt \]

Fracture quantum of length

\[G^* = G_C \]

Plate thickness

\[G = -\frac{dW}{dA} \quad \Delta W = -\int GdA = -\int \frac{K_I^2}{E} dA \]

Quantized stress-intensity factor (generalized):

\[G^* = -\frac{\Delta W}{\Delta A} = \frac{\int \frac{K_I^2}{E} dA}{\Delta A} \]

\[G^* = G_C \quad \frac{1}{\Delta A} \int \frac{K_I^2}{E} dA = \frac{K_{IC}^2}{E} \]

\[K_I^* = \sqrt{\frac{1}{\Delta A} \int K_I^2 dA} = K_{IC} \]
Monolayer graphene and examples

- Young’s modulus $E = 1$ TPa
- Intrinsic strength $\sigma_{\text{int}} = 130$ GPa
- Ultimate strain $\varepsilon_u = 25\%$

Monolayer graphene hanging on a silicon substrate (scale bar: 50µm)

Tensile test on macro samples of graphene composites

Tennis racket made of graphene (Head ©)
Carbon nanotubes

The singlewalled carbon nanotubes (SWCNTs) presents:
- Young’s modulus $\equiv E = 1000$ GPa
- Tensile strength $\sigma = 300$ GPa
- Ultimate strain $\varepsilon_u = 30\%$

The MWCNTs breaks in the outermost layer (“sword-in-sheath” failure),
- Young’s modulus $\equiv E = 250$ to 950 GPa
- Tensile strength $\sigma = 11$ to 63 GPa
- Ultimate strain $\varepsilon_u = 12\%$

Multiwalled carbon nanotubes (MWCNTs)
Exercise 1

E.g., infinite plate

\[K_I = \sigma \sqrt{\pi a} \]

\[K_I^* = \frac{1}{\sqrt{q t}} \int_a^{a+q} \sigma^2 \pi a t \, da = \sigma \frac{\pi}{2q} [(a + q)^2 - a^2] = \sigma \sqrt{\pi \left(a + \frac{q}{2} \right)} \]

Strength of graphene \(K_I^* = K_{IC} \)

\[\sigma_f = \frac{K_{IC}}{\sqrt{\pi \left(a + \frac{q}{2} \right)}} \]

\(a \uparrow \quad \sigma_f \downarrow \) Unstable crack growth
$q \to 0 \quad \text{Correspondence Principle} \quad QFM \to LEFM$

$a \to 0 \quad \sigma_f = \sigma_{\text{ideal}}$

$$\sigma_{\text{ideal}} = \frac{K_{IC}}{\sqrt{\pi \frac{q}{2}}} \implies q = \frac{2}{\pi} \frac{K_{IC}^2}{\sigma_{\text{ideal}}^2}$$

Very close to predictions by MD and DFT

Very close to experimental measurement (2014)

$\sigma_{\text{ideal}} \sim 100 \text{ GPa}$

$\sigma_{\text{ideal}} \sim \frac{E}{10} \quad E \sim 1 \text{ TPa}$

Peeling of graphene

\[E \to \infty \quad \bar{E} \to 0 \]

\[\delta = l - l \cos \theta \]

\[G = -\frac{dW}{dA} = \frac{dL}{dA} \quad L = Fd \quad dA = bdl \]

\[G = \frac{d}{bdl} Fl(1 - \cos \theta) = \frac{F(1 - \cos \theta)}{b} \]

\[G = G_C \quad \implies \quad F_C = \frac{bG_C}{1 - \cos \theta} \]

\(F_C \) strongly dependent on \(\theta \)

Exercise 3

Apply LEFM for measuring the fracture toughness of a sheet of paper with a crack of a certain length in the middle:
Bending theory

Bending of beams

\[\frac{d\varphi_x}{2} \approx y \frac{d\varphi_x}{2} \]

\[\frac{\varepsilon dz}{2} \approx y \frac{d\varphi_x}{2} \]

\[\frac{M_x}{I_x} y \approx K y \]

\[M_x = \int_{-h/2}^{h/2} \sigma_z y b dy = K I_x \]

\[\chi_x = \frac{1}{R_x} = \frac{d\varphi_x}{dz} = \frac{\varepsilon_z}{y} = \frac{\sigma_z}{Ey} = \frac{M_x}{I_x E} \]

\[\chi_{\text{max}} = \frac{\varepsilon_{z,\text{max}}}{h/2} \]
Exercise 4

Derive the maximal graphene curvature.

For graphene \(h = t \approx 0.34 \, \text{nm} \rightarrow \chi_{\text{max}} \text{huge} \rightarrow \) flexibility is more a structural than a material property

\[
\varphi_x = -\frac{dv}{dz} \Rightarrow \frac{d^2 v}{dz^2} = -\frac{M_x}{I_x E}
\]

Load per unit length

\[
\frac{dT}{dz} = -q \quad \Rightarrow \quad \frac{d^4 v}{dz^4} = \frac{q}{I_x E}
\]

Elastic line equation

Load per unit area

\[
\nabla^4 W = \frac{q}{D}
\]

Elastic plane equation

Bending stiffness

\[
D = \frac{E t^3}{12(1 - \nu^2)}
\]