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EXxercises by me

1. Apply QFM for deriving the strength of realistic thus defective
graphene (and related 2D materials);

2. Apply LEFM for deriving the peeling force of graphene (and
related 2D materials).

Exercises by you

1. Apply LEFM for measuring the fracture toughness of a sheet
of paper;

2. Apply the Bending theory for calculating the maximal
curvature before fracture.



Stretching

Fiber under tension F T
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Stress-strain curve:

Signature of the material and main tool for deriving its
mechanical properties

x = failure o
If the curve is monotonic, a A
force-control is sufficient. C

You can derive AB in .
displacement control, CD in
crack-opening. The dashed
area is the kinetic energy D B
released per unit volume
under displacement control.
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Mechanical properties
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The toughness modulus is a material
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Size-effects

The post-critical behaviour is size-dependent especially for brittle
materials.
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For brittle materials § has no meaning: instead of the toughness modulus we
have to use the fracture energy.
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E=G.A

G. = fracture energy or energy
py dissipated per unit area
Fracture
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The reality is in between: energy dissipated on a fractal domain:
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D is the fractal exponent, 2 <D < 3



Fracture Mechanics

T T T T T T T T ol K; = Stress intensity factor
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Elastic solution is singular:
We cannot say

Of: Otip = Omax
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Linear Elastic Fracture Mechanics
(LEFM)

Griffith’s approach
dw _
G = T dA W=E—-L S———— External work
—7 X
Energy release \ Stored elastic
rate Crack surface Total potential energy
area energy
Crack propagation criterion:
G =G G. = fracture energy

G = % Elastic solution

K; only for a function of external load and geometry

K, =K Kic =+ GcE Fracture toughness



K; values reported in stress-intensity factor Handbooks
E.g., infinite plate (i.e. width > crack length ~ graphene)
K; = oyma
Strength of graphene with a crack of length 2a
K; = ovma = K¢
Jra

Assuming statistically a « [ = structural size:

O'f X Z_l/z

Size effect on a fracture strength EEE) larger is weaker
mmm) problem of the scaling up....



Paradox of > a—0

With graphene pioneer Rod Ruoff we invented Quantized Fracture
Mechanics (2004).

The hypothesis of the continuous crack growth is removed: existence of
fracture quanta due to the discrete nature of matter.
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ABSTRACT
A new energy-based theory. quantized fracture mechanics (QFM), is pre-
sented that modifies continuum-based fracture mechanics; stress- and strain-
based QFM analogs are also proposed. The differentials in Griffith’s criterion



Related papers:

N. M. Pugno, “Dynamic quantized fracture mechanics”, Int. J. Fract, 2006

N. M. Pugno, “New quantized failure criteria: application to nanotubes and
nanowires”, Int. J. Fract, 2006



Quantized Fracture Mechanics (QFM)

G* = vy AA = fracture quantum of surface area = gt
Quantized energy . Fracture Plate
release rate G" = G¢ quantum thickness
of length
c=-W AW = deA = jK’z dA
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Quantized stress-intensity factor (generalized): K" = i [K,*dA = K¢




Monolayer graphene and examples

C. Lee, X. Wei, J.W. Kysar, J. Hone,
“Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, 2008 :

-

Young's modulus = E =1 TPa
< Intrinsic strength o;,,; = 130 GPa

Ultimate strain €, = 25 %

Monolayer graphene hanging on a Tensile test on macro samples  Tennis racket made of
silicon substrate (scale bar: 50um) of graphene composites graphene (Head ©)



Carbon nanotubes

Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, Rodney S. Ruoff, “Strength and
Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load”, Science, 2000:

/ The singlewalled carbon nanotubes
(SWCNTSs) presents:

< Young’s modulus = E =1000 GPa
Tensile strength o = 300 GPa

Ultimate strain ¢, = 30 %

The MWCNTSs breaks in the outermost layer
(“sword-in-sheath” failure),

< Young’s modulus = E =250 to 950 GPa
Tensile strength o = 11 to 63 GPa

Ultimate strain ¢, = 12 %

Multiwalled carbon nanotubes (MWCNTS)



Exercise 1

E.g., infinite plate
K; = oyma

1 ratdq T
Kﬁ:\/aja Gzﬂatdaza\/i[(a+q)2—az]=0\/n(a+%)

Strength of graphene K," = K,

oF = al or1 Unstable crack growth




q —» 0 Correspondence Principle QFM — LEFM

a—0 Of = Ojdeal

2
K 2 K
ideal -
q T Ojgeal
L]

N

; N Very close to predictions

. \ \/ a + by MD and DFT

Gigeqr ~ 100 GPa ~ 3MPaym Very close to experimental
(QFM 2004) measurement (2014)

E
Oideal ™~ 1—0 E~1 TPa

P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P. E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, P. M. Ajayan, T.
Zhu & J. Lou, Fracture toughness of graphene, Nature, 2014



Exercise 2

Peeling of graphene

.

Y E - o E—-0

’ /1 6=1—1cosH

= dW—dL L=Fd dA = bdl
B dAd_ dA B a B )
F(1 — cos
G—ﬁFl(l—cose)— >
G=6 = F-= bGc
¢ ¢ ™7 1—cosH

F. strongly dependent on 6

N. M. Pugno, “The theory of multiple peeling”, Int. J. Fract, 2011
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Exercise 3
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Apply LEFM for measuring the fracture
toughness of a sheet of paper with a
crack of a certain length in the middle:
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Bending theory

Bending of beams

Bending Moment

M,
Moment of inertia
L bh3
12

5 \
2
M, = jhazybdy = KI,




Exercise 4

Derive the maximal graphene curvature.

For graphene h =t = 0.34 nm - y,,4huge — flexibility is more a structural
than a material property

Load per unit length

T L VT dT |
M <’<_ —>(> M dz 1 dv  ¢q
N N am T\ dz* T LE
dz —=T oy .
dz Elastic line equation

~— Load per unit area
For plates: V*w =%

D
I Et3

Elastic plane equation Bending stiffness D = 12(1 — v2)




