Thermopeaking in Alpine streams: event characterization and time scales

Guido Zolezzi,1* Annunziato Siviglia,1 Marco Toffolon,1 and Bruno Maiolini2

1 Department of Civil and Environmental Engineering, University of Trento, Trento, Italy
2 IASMA Research and Innovation Centre, Fondazione Edmund Mach, Environment and Natural Resources Area, Trento, Italy

ABSTRACT

The present study provides a detailed quantification of the ‘thermopeaking’ phenomenon, which consists of sharp intermittent alterations of stream thermal regime associated with hydropoaking releases from hydroelectricity plants. The study refers to the Noce River (Northern Italy), a typical hydropower-regulated Alpine stream, where water stored in high-altitude reservoirs often has a different temperature compared with the receiving bodies. The analysis is based on a river water temperature dataset that has been continuously collected for 1 year at 30-min intervals in four different sections along the Noce River. A suitable threshold-based procedure is developed to quantify the main characteristics of thermopeaking, which is responsible for thermal alterations at different scales. The application of Wavelet Transform allows to separately investigate the thermal regime alterations at sub-daily, daily and weekly scales. Moreover, at a seasonal scale, patterns of ‘warm’ and ‘cold’ thermopeaking can be clearly detected and quantified. The study highlights the relevance of investigating a variety of short-term alterations at multiple time scales for a better quantitative understanding of the complexity that characterizes the river thermal regime. The outcomes of the analysis raise important interdisciplinary research questions concerning the effects of thermopeaking and of the related short- and medium-term effects on biological communities, which have been rather poorly investigated in ecological studies. Copyright © 2010 John Wiley & Sons, Ltd.

KEY WORDS thermopeaking; regulated Alpine rivers; river temperature; hydropower; Wavelet Transform

Received 29 October 2009; Accepted 14 March 2010

INTRODUCTION

In Alpine regions, hydroelectricity generation is increasingly becoming a key power source and its ability to quickly and inexpeviously respond to short-term changes in demand make it the suitable tool for answering to the necessities of the deregulated energy market (Holland and Mansur, 2008). This economical need is reflected in the temporal patterns of dam operations with consequences for the water bodies which receive downstream releases, in the form of ‘hydropoaking’ (e.g. Gore and Petts, 1989), typically consisting in sharp releases of water in the river reaches below dams. The unsteadiness related to this highly intermittent phenomenon has cascading effects on both the biotic (Rea and Ganf, 1994; Nilsson et al., 1997; Cereghino and Lavandier, 1998; Blanch et al., 1999; Jansson et al., 2000; Scruton et al., 2008; Bruno et al., 2009) and abiotic compartments (Foulger and Petts, 1984; Montgomery et al., 1999; Bunn and Arthington, 2002; Frutiger, 2004; Sawyer et al., 2009).

Hydropoaking may also significantly affect the thermal regime of rivers (Ward and Stanford, 1979). Indeed, especially in mountain areas, releases from high-elevation reservoirs are often characterized by a markedly different temperature from that of the receiving body, thus causing also sharp water temperature variations which can therefore be named ‘thermopeaking’. Nowadays, understanding heat fluxes and thermal dynamics within rivers is increasingly becoming an issue of great relevance (Hannah et al., 2008). Anthropogenic influences and climate changes alter the thermal regime of rivers, which can lead to shifts in aquatic species composition and changes in the rates of biogeochemical processes (Caisissie, 2006).

A main issue is to detect the role of the several mechanisms that control river temperature at different temporal and spatial scales (e.g. Brown and Hannah, 2008; Burkholer et al., 2008). This is achieved by assessing the relative contributions of heat advection and diffusion processes as well as those of external sources located in the atmosphere and in the riverbed (Webb et al., 2008; Toffolon et al., 2009) and due to the input of natural and artificial lateral tributaries (Siviglia and Toro, 2009). Several studies have focused on thermal and ecological effects of hydropower plants (Ward and Stanford, 1979; Cereghino and Lavandier, 1998; Flodmark et al., 2004; Grubbs and Taylor, 2004). However, little is known about the role of short-term temperature fluctuations related to thermopeaking occurring in the river reach below dams, although this can be a major cause of riverine habitat degradation posing serious threats to aquatic communities. The study of Steel and Lange (2007) acknowledges the ecological relevance of short temporal scales. For this purpose, they employ Wavelet Analysis in order to analyse thermal alteration at time scales ranging from 1 to 32 days on daily average river water temperature series in...
the Willamette River Basin (Oregon, USA), characterized by the presence of large multipurpose dams. Hydropeaking releases associated with power production also alter the smallest time scales at hourly intervals. Frutiger (2004) analyses a 30-min interval temperature dataset to investigate the thermal effects because of hydropower releases in the Ticino River (Switzerland). He recognizes the number of temperature peaks per day, unnaturally forced by hydropower releases, as a major ecological threat.

The purpose of the present work is to provide a quantitative representation and description of the rapid stream temperature oscillations associated with hydropeaking and on their short- and medium-term effects (daily and sub-daily) on the river thermal dynamics. We specifically focus on identifying the impacted temporal scales in altered rivers, which is crucial information for defining remediation actions.

In order to achieve this objective we first devise a technique suitable to identify ‘hydropeaking’ as well as ‘thermopeaking events’. The approach is based on defining threshold rates of change in terms of the water level series first derivative, and on the application of Wavelet Transform (WT) which is particularly suitable to detect relevant scales of variability in time series (Foufoula-Georgiou and Kumar, 1995; Torrence and Compo, 1998). WT is increasingly being employed in hydrology (Kumar and Foufola-Georgiou, 1993; Katul et al., 1998) and namely in the study of altered flow regimes (Zolezzi et al., 2009). The study is based on a high time-resolution dataset (30 min) collected in the Noce River, a typical Alpine river catchment impacted by multiple hydropower plants located at different elevations.

MATERIALS AND METHODS

Study area

The study was conducted along the Noce River (Figure 1), a fourth-order Alpine stream located in the Trento Province, North-Eastern Italy. The river has been the subject of interdisciplinary monitoring for several years with the aim of quantifying the effects of hydropower production on riverine ecology. The total river length is 105 km, and it drains a typical Alpine catchment with an area of 1370 km². River basin elevations range from the confluence with the Adige River (226 m asl), up to Mount Cevedale peak (3769 m asl) (Figure 1). Major tributaries are the Vermigliana, the Rabbies and the Novella creeks. The Noce River is a main tributary of the Adige River. Dominant bed surface grain size ranges from coarse gravel to cobble with coarse sand matrix.

In the Noce River basin, hydropower is generated by three plants fed by four artificial reservoirs closed by dams. For this study, we consider two different junctions located, respectively, in the middle and lower parts of the catchment. The first confluence is located 5 km downstream the village of Malé where the unimpacted Rabbies Creek (yearly mean discharge 33 m³/s, basin area 142 km²) flows into the Noce River. The second confluence is located in the lower basin, near the village of Mezzocorona, where water stored in Santa Giustina reservoir (capacity of 182 × 10⁶ m³) first passes through the Mollaro reservoir (capacity of 2 × 10⁶ m³), and then feeds the Mezzocorona power plant that releases a maximum discharge of 60 m³/s into the Noce River. The reservoir of Santa Giustina is created by a 152-5 m high dam, with the head at 532-5 m asl, maximum and minimum

![Figure 1. Study site: map of the Noce River catchment with location of the temperature and streamflow gauging stations (circles), where thermopeaking was investigated. The closure section of the catchment is located where the Noce River joins the main stem of the Adige River.](image-url)
water levels at 530 and 445 m asl, respectively, and the hypolimnetic intake level at 437 m asl (Edison, 2008).

Data collection
Stream water temperature was monitored with high temporal and spatial resolution at four different locations along the basin through 10 StowAway TidbiT temperature dataloggers. The loggers have been placed along the main channel at suitable cross-sections up- and downstream of the two junctions. Namely, for the Rabbies junction, gauging sections were chosen near the village of Croviana (immediately upstream the confluence) and near the bridge named ‘Ponte Stori’ (Figure 1). Although the latter is located a few kilometres downstream the Rabbies-Noce confluence, no significant lateral tributary joins the Noce River in between. River water temperature was recorded at a sampling interval of 30 min beginning from 1st January until 31st December 2007. The loggers are waterproof, and detect temperatures ranging from −5 to +37 °C. The dataset is complemented by water level data available at three river sections (Figure 1): Noce River at Malé (upstream of Croviana), at Ponte Stori and a few hundreds of meters downstream the release of the Mezzocorona power plant. At these locations, a discharge-rating curve is also available.

Methods of data processing

Threshold analysis. In this section, we shortly describe a simplified procedure used for baseflow separation in order to precisely individuate the peaking events. This allows to estimate their main characteristics in terms of duration, intensity and time distribution. The procedure is based on establishing a threshold rate of change of the water level time series.

The first step is the preparation of the dataset, which in our case is the water level series on an annual basis. Streamflow data are obtained from water level data by means of a calibrated rating curve. Then, it is worth removing outliers, if any, and applying a short-scale moving average (e.g. 1 h) in order to smooth high-frequency irregularities of the signal, often due to lack of instrumental precision. This allows to define the reference data \(y(t) \) on which the events will be detected.

The second step is the individuation of the base flow (see Figure 2). The rate of change is given by the derivative of the signal: \(\dot{y} = \frac{dy}{dt} \). Its maximum values \(y_{max} = \max(|\dot{y}|) \) allow to detect the initial and final times of a hydropeaking event when compared with a critical threshold that has to be chosen: \(y_\text{c} = y_{max}/n_h \). In the present analysis, we have chosen \(n_h = 3 \), a threshold value that has been calibrated by manual analysis and that in general depends on the dataset. Afterwards, times \(t_{\text{d}} \) for which \(|\dot{y}| > y_\text{c} \) are selected, and the curve \(y_c(t) \) is reconstructed by joining the points \(y(t_{\text{d}}) \) through linear interpolation. Such a curve represents an approximation of the line separating the base flow \(y_{b,0}(t) \) (<\(y_c \)) from the peaks \(y_p(t) \) (>\(y_c \)). After that, short-term oscillations are removed from such approximation of the base flow by applying a moving average with a 1-day period in our case. This individuates the curve \(y_b \); as a second approximation only those points \(y_{b,1} \) below such a curve \((y_{b,1}(t) < y_{b,2}(t))\) are selected. The definition of the base flow \(y_{b,2} \) is further refined by excluding spikes close to the edges of peaking events, on the basis of absolute values of the centred differences referring to three subsequent values. The approximation of the base flow \(y_{b,3}(t) \) is finally given by a linear interpolation of \(y_{b,2} \) over the points removed from the original data series. Applying a moving average with a period of several days will allow to obtain a smooth signal.

The third step is the individuation of the peaking events: The additional hydropeaks are defined as differences between the measured values and the base flow, i.e. \(p(t) = y - y_{b,3} \), and negative values are excluded. Initial and closing times of each event are therefore easily determined as those separating periods of base flow \((p = 0) \) from those with \(p > 0 \) that correspond to the hydropeaks. Once the peaks have been clearly recognized, the base flow can be redefined as the difference between the original data and the peak series, that is \(y_b = y - p \).

The fourth step is the recognition of multiple peaking events, defined by a significant reduction of the water level although higher than the base flow. We have defined that two events are separated if the signal drops below a reference level that is 20% of the peak value. This can indeed result from a temporary stop of at least one of the available turbine groups in the power plant. In general, the quantification of such threshold, therefore, depends on the characteristics of the hydropower system.

Finally, once the time series of the peaking events has been identified, it is straightforward to calculate the temporal length of each event, the height of the maximum peak value, and the time distribution during the year.

Figure 2. Water levels (black line) in Mezzolombardo from day 188 (Sunday, 8th July 2007) to day 195 (Sunday, 15th July 2007). The base flow (thick blue line) is identified through the procedure described in Section on Methods of Data Processing. The duration of the peaking events is visualized through the red segments close to the horizontal axis.
Wavelet Transform. WT has been applied to the recorded temperature series at the four locations near the Rabbies and the Mezzocorona junctions. It can be seen as a mathematical tool for extracting the dominant modes of variability from statistically non-stationary signals. In fact, WT is localized in time, and thus makes possible to detect time variations in the modes of variability associated to signal unsteadiness (see, e.g. Daubechies, 1992; Lau and Weng, 1995; Torrence and Compo, 1998). This is accomplished by letting the width of the wavelet to increase with the period, thus allowing a more efficient and accurate localization of changes in the dominant modes of variability with respect to the Windowed Fourier Transform (WFT), which uses a fixed-width window (Kaiser, 1994; Lau and Weng, 1995).

The continuous WT \(W_n(s) \) of a discrete sequence \(x_n \), \(n = 1, 2, \ldots, N \), at a given time scale \(s \) is defined as follows (Torrence and Compo, 1998):

\[
W_n(s) = \sum_{n=0}^{N-1} x_n \Psi^* \left(\frac{n}{s} \right)
\]

(1)

where \(N \) is the length of the series, \(\eta = (n' - n) \Delta t \) is the dimensionless time, \(\Delta t \) is the sampling time step, and superscript * indicates the complex conjugate.

The wavelet function \(\Psi(\eta) = (2\pi s/\Delta t)^{1/2} \Psi_0(\eta) \) is obtained by normalizing a ‘mother’ wavelet \(\Psi_0(\eta) \) such as to respect the following condition:

\[
\sum_{k=0}^{N-1} |\Psi(s \omega_k)|^2 = N
\]

(2)

for \(k > N/2 \), at each scale \(s \). In Equation (2), \(\omega_k = 2\pi k/(N \Delta t) \), for \(k \leq N/2 \), and \(\omega_k = -2\pi k/N \Delta t \), otherwise. In addition, the mother wavelet should have unit energy, i.e. \(\int_{-\infty}^{\infty} |\Psi_0(\omega')| \, d\omega' = 1 \). In this paper, we utilize the Morlet wavelet as mother wavelet because it has been shown suitable to detect oscillating patterns (Torrence and Compo, 1998). It reads:

\[
\Psi_0(\eta) = \pi^{-1/4} e^{-\eta^2/4}
\]

(3)

with \(\omega_0 = 6 \).

The WT (1) is typically computed at the following set of scales:

\[
s_j = s_0 2^{j/\Delta j} \quad (j = 1, 2, \ldots, J)
\]

(4)

where \(s_0 \) is the smallest scale considered in the analysis and \(J = \Delta j^{-1} \log_2(N \Delta t/s_0) \), such that the largest scale is \(N \Delta t \), i.e. the length of the time series. Furthermore, \(\Delta j \) is the inverse of the number of scales per each octave, and \(s_0 \) should be chosen such as to obtain a minimum Fourier period of \(2 \Delta t \). Because the equivalent Fourier period for the Morlet wavelet is given by \(\lambda_j = 1/03 \, s_j \), in all computations we have chosen to use \(s_0 = 2 \Delta t \), and \(\Delta j = 1/12 \) such as to obtain a smooth wavelet spectrum.

The distribution of energy among the modes of variability (periods) is described by the Wavelet Power Spectrum (WPS) which is given by:

\[
|W_n(s)|^2 = W_n(s)\tilde{W}_n(s)
\]

(5)

where \(\tilde{W}_n(s) \) is a reconstruction factor, which for the Morlet wavelet with \(\omega_0 = 6 \) assumes the value 0.776. In addition, the time average of the WPS from \(t_1 = n_1 \Delta t \) to \(t_2 = n_2 \Delta t \) retains the most significant features of the time interval \([t_1, t_2]\):

\[
\bar{W}_p^2(s) = \frac{1}{\Delta n} \sum_{n=n_1}^{n_2} |W_n(s)|^2
\]

(6)

where \(\Delta n = n_2 - n_1 \) and \(p \) is a suffix that identifies the time interval over which the average is computed. When the interval \([t_1, t_2]\) coincides with the length of the dataset, the quantity \(\bar{W}_p^2 \) represents the Global Wavelet Spectrum (GWS), an overall time-average measure of signal variability.

RESULTS

The results section is organized into four parts. First, we provide a quantitative characterization of the peaking events related with the Mezzocorona power plant by analysing the water level series, which is much more suitable as compared to the temperature series to detect events according to the procedure described in Section on Threshold Analysis. Second, having detected initial and final times of the hydropeaking events, it is straightforward to individuate thermopeaking on the temperature series. Third, we apply WT to the temperature series in order to point out the time scales at which thermopeaking affects the thermal regime of the Noce River reach under consideration. Finally, the analysis of the SAWP allows to investigate how the thermal alteration at each scale varies during the year.

Hydropeaking characterization

The main characteristics of hydropeaking events can be computed after applying the event-detection procedure described in Section on Threshold Analysis to separate the altered signal from the base flow. We illustrate the phenomenon referring to the water level \((H) \) series recorded downstream of the release from the Mezzocorona hydropower plant (Figure 1). The corresponding streamflow values are computed using a rating curve of the type

\[
Q = a(b + H)^c
\]

(7)

Copyright © 2010 John Wiley & Sons, Ltd.
where Q is the discharge measured in m3/s and $a = \text{56.14 m}^3$/s, $b = \text{0.31 m}$, $c = \text{1.92 m}$. An example of the water level measured in summer 2007 is shown in Figure 2. A typical scenario with no hydropeaking during Sundays (days 188 and 195) and Saturday afternoon (day 194) clearly appears. This is associated with a rather predictable pattern of hydropower production occurring during the whole day from Monday to Friday, which may split into two separate segments, like for day 191, or reduce around noon, like for days 190, 192 and 193. Disentangling single events is not always straightforward, because the individuation of two daily peaks depends on the assumed thresholds (cf., for instance days 191 and 193), as discussed in Section on Threshold Analysis.

The characteristics of hydropeaking events change during the year. In some periods, the water is released every day of the week at the maximum rate; in other periods (see, for instance Figure 3), the requests of the energy market determine a more irregular pattern of hydropower production that causes short-period, irregular water level peaks. The relationship between hydropoeaking and the price of energy can be easily argued by looking at Figure 4, where the weekly averaged daily volumes of released water are compared with the monthly averaged energy prices, referred to the central day of each month. The plot clearly shows that hydropoelectricity production is reduced when the average price diminishes (April and August), although an even closer correlation can be expected if maximum instead of averaged prices are used. Although referring to average figures, the seasonal trend emerging from Figure 4 parallels that associated with intra-annual variations in the intensity and frequency of the peaking events, which will be examined in more detail in Section on Seasonal Variations in the Thermoepeaking Effects.

Figure 5 summarizes the behaviour of two key characteristics of the hydropeaking events along the year: the events duration Δt and their intensity ΔH, defined as the maximum water level jump relative to the base flow. Multiple events have been accounted for separately. Figure 5 provides an overall indication of those periods during the year that have been characterized by a reduction in intensity (and frequency) of the events, which can also be associated with the reduced electricity production shown in Figure 4. Cumulative distributions of event durations and of maximum hydropeaking jumps are reported in Figure 6a and b, respectively, on the basis of time classes of 1 h. Both primary hydropeaking events, as single events, and separate multiple events have been considered.

The main result is that the distribution of duration is bimodal, with one peak at about 6–8 h and another one around 18 h for single events (Figure 6c). The distribution is also approximately bimodal considering multiple events, whose number is about 10% larger than single events (Figure 6d). In this case, the peaks are shifted towards shorter durations: the former peak is around 3–6 h, the latter on 15 h. The two peaks can be recognized as characteristics of two typical hydropower generation schemes: half-day production occurring in the morning or in the afternoon only and the whole day production, continuously occurring from morning to evening.

Thermoepeaking characterization

Distinguishing the thermal alterations caused by the hydropower releases from the diurnal cycle due to the variation in the net external energy input is not an obvious task if only one gauging station is considered. In particular, it is more complex than individuating hydropeaking events, for which the basic flow usually varies on a longer time scale, and hence it is relatively easy to separate the two contributions, although this may not be the case for rivers subjected to glacial melting with strong diurnal
streamflow variations. As a rule, a reliable characterization of thermopeaking requires information from two gauging stations, located upstream and downstream of the hydropower release. Applying a suitable time shift to one of the two records allows comparing the upstream and downstream temperature signals, and hence to obtain the net amount of thermal alteration ΔT by subtraction. The value of the time shift depends on the mean flow velocity and it can also be determined examining the covariation between the two signals.

We refer to the case of the Mezzocorona power plant release in order to investigate in detail the properties of thermopeaking. Owing to the distance between the thermal gauging stations (see Figure 1), the convective shift among the upstream and downstream series is approximately 0.05 day (1.2 h).

![Figure 5. Characteristics of hydropoeaking events in Mezzolombardo during 2007 (considering multiple events): (a) event duration Δt; (b) event peak value ΔH.](Color Figure - Online only)

Figure 5. Characteristics of hydropoeaking events in Mezzolombardo during 2007 (considering multiple events): (a) event duration Δt; (b) event peak value ΔH.

![Figure 6. Main characteristics of the hydropoeaking events in Mezzolombardo (year 2007): (a) cumulative frequency, normalized as $N = n/n_{tot}$, of the event duration Δt (subdivided in classes of 1 h); (b) cumulative frequency of the event peak value ΔH; (c) frequency of the originally individuated events; (d) frequency considering separate multiple events. The red bar at 25 h indicates the sum of the events with duration longer than 1 day.](Color Figure - Online only)

Figure 6. Main characteristics of the hydropoeaking events in Mezzolombardo (year 2007): (a) cumulative frequency, normalized as $N = n/n_{tot}$, of the event duration Δt (subdivided in classes of 1 h); (b) cumulative frequency of the event peak value ΔH; (c) frequency of the originally individuated events; (d) frequency considering separate multiple events. The red bar at 25 h indicates the sum of the events with duration longer than 1 day.
Figure 7 shows how the thermally altered streamflow affects the daily temperature cycle. In the period considered (1 week in July), the water temperature in the reservoir is lower than that of the receiving stream: hence what can be defined a cold thermopeaking occurs. The duration of the thermopeaking events is compared with the ones estimated by means of water level variations (dash-dot line), showing a noticeable agreement. It is worth noting that the magnitude of the thermal alteration (up to 6°C in this case) is comparable with the sinusoidal diurnal variation in the undisturbed upstream reach (approximately 5°C).

In fact, a simple energy balance holds,

$$Q_u T_u + Q_d T_d = Q_u T_d$$

(8)

where Q is the discharge, T is the temperature, and subscripts refer to the upstream reach (u), hydropower release (r) and downstream reach (d), where $Q_{d} = Q_{u} + Q_{r}$ at the confluence. The equality is only approximate because the external energy inputs are neglected in the balance, which assumes an instantaneous mixing process. The temperature after mixing is then

$$T_d = T_r - \frac{Q_u}{Q_r} (T_d - T_u)$$

(9)

Considering some reference values of the variables during the altered period ($Q_u = 8\text{ m}^3/\text{s}$, $Q_d = 68\text{ m}^3/\text{s}$, $Q_r = 60\text{ m}^3/\text{s}$, $T_u = 19^\circ\text{C}$, $T_d = 13^\circ\text{C}$), it follows that $T_d \approx T_r + 0.8^\circ\text{C}$ and hence the reservoir temperature can be estimated approximately as $T_r \approx 12^\circ\text{C}$. Therefore, because the released discharge is much larger than the upstream discharge ($Q_d/Q_u \ll 1$) and the temperature in the downstream reach is almost coincident with T_r, T_d keeps constant during the period of hydropower production, as it appears in Figure 7.

An opposite behaviour is shown during the winter season, where a warm thermopeaking occurs due to the higher temperature of reservoir water (in particular, for withdrawal of hypolimnetic water if the reservoir may be considered as partially stratified) with respect to the river temperature. This is illustrated in Figure 8, where the same 2 weeks as in Figure ?? (regular hydropaking) are considered. In this case, the thermal alteration (up to 3°C) is notably larger than the natural daily variation (approximately 1°C).

The beginning and end times of thermopeaking events are relatively constant (roughly, from morning to evening for the whole day production if considering a river reach close to the hydropower release). Therefore, it is easy to understand the different behaviour of the cold and warm thermopeaking. In fact, in the former case (Figure 7), the river temperature is reduced when the natural heating would increase. If thermopeaking is long enough, water temperature may not be affected by the diurnal cycle and remain almost constant during day and night (this does not occur in the Mezzocorona because there is an abrupt temperature increase at late evening when hydropower production ends). In the opposite case (warm thermopeaking, Figure 8), the temperature is artificially increased in correspondence with the beginning of the natural daily cycle (reduced during winter). As a consequence, the daily excursion of temperature is significantly increased.

A more general picture can be drawn considering the whole year 2007 (Figure 9). The alterations of the temperature give rise to an annual cycle of warm and cold thermopeaking, having two opposite maxima in November, when the reservoir is still warmer than the river, and in May, when the reservoir has not been
affected by the summer heating yet. In order to clarify
the cumulative effect of such alterations, we introduce
the integral of the temperature alterations
\[
D(t_1; t_2) = \int_{t_1}^{t_2} \Delta T(t) \, dt
\] (10)
which expresses the differences in terms of degree days
between the two sections, and the average effect over the
period
\[
\Delta T_a = \frac{D(t_1; t_2)}{t_2 - t_1}
\] (11)
The monthly (i.e. \(t_2 - t_1 \approx 30-5 \) days) residual varia-
tions are shown in Figure 9 by means of black segments.
They indicate the average variation of temperature per-
ceived by the ecosystem during the period. Cold thermo-
peaking months in the Noce River in 2007 occur from
March to July, and warm thermopeaking from September
to January, with August and February being transitional
months. Although our record refer to year 2007, such
seasonality is likely to exhibit little variations from year
to year.

Impact of thermopeaking at different scales

In order to analyse the thermal alteration at different time
scales, we apply the WT analysis to the 30-min tem-
perature dataset. Upstream/downstream differences in the
Wavelet Power Spectra allow to detect the most affected
time scales. Note that hereafter the terms ‘scale’ and
‘period’ will be used with the same meaning, because
they are nearly equivalent for the Morlet wavelet that
has been chosen as wavelet base in the present analysis.
In this respect, it can be interesting to compare an artifi-
cial channel junction, resulting from the lateral input of
released water, with a more natural configuration, where
a hydropower-free lateral tributary with comparable dis-
charge magnitudes joins the main river channel. Such
reference junction is provided in the Noce River basin
by the Rabbies-Noce confluence, located in the middle
part of the basin at an altitude of nearly 900 m asl (see
Figure 1 and Section on Materials and Methods).

The panels (a and d) of Figure 10 show the river water
temperature 2007 time series recorded immediately
upstream and downstream the inlet from the Mezzo-
corona power plant. Panels (b and e) show the corre-
sponding WPS while the GWS is reported in panels (c
and f). The WPS together with the GWS illustrate global
and local properties of the signal energy expressed in
terms of thermal oscillations. The yellow band (locally
turning to red) at the scale of 1 day reflects the diel ther-
mal fluctuations in both the upstream and downstream
temperature series. The corresponding peak appearing on
the respective GWSs (Figure 10c and f) confirms that
the diel scale is one of the most significant in the ther-
mal regime: it does not seem to be much affected by
the hydropoeaking release in the average. Some energy
is also associated to shorter periods of oscillations, but
yellow (i.e. more energetic) spots in Figure 10b and e
are more irregularly distributed over time, with more
evident upstream/downstream differences in comparison
to the daily period. The weekly scale is another rele-
vant oscillation period displaying discrepancies between
the upstream and downstream temperature series, at least
when time-averaging over the whole year. Furthermore,
the signal energy grows faster when moving towards
larger oscillation periods due to the seasonal fluctuation
that, however, is too large to be correctly captured by the
present analysis.

Figure 11 shows the ratio \(\rho_{GWS}\) between the GWS
of the upstream and downstream temperature series at
the hydropower-impacted Mezzocorona junction (contin-
uous line) and at the Rabbies junction (dashed line). Unit
values of \(\rho_{GWS}\) indicate the absence of time-averaged
alteration at that period of oscillation. Therefore, periods
with values of \(\rho_{GWS}\) that differ significantly from unity
are the most thermally impacted by the junction. The
strongest relative thermal alteration in the artificial (Mez-
corona) junction is associated with the sub-daily scales,
where the downstream time-averaged energy is more than
four times larger with respect to the upstream tempera-
ture series. In contrast, the oscillations at the daily scale
is slightly reduced (~20%), while in the average ther-
mopeaking increases about 50% of the energy of thermal
oscillation at larger scales. In particular, the weekly scale
might reflect a residual tendency to reduce hydropower
production during weekends.

Comparing the downstream thermal alteration between
the two types of junctions, we must keep in mind that
these alteration relate to two main effects. One is the
temperature difference between the upstream channel and
the lateral release, while the other is the hydropoeaking
intensity, defined in terms of the streamflow ratio between
the same channels. Both parameters are strongly time-
dependent at various scales and the available dataset does
not allow a close separation between them, particularly
in the case of the Rabbies junction.

The strong thermal alteration occurring at short scales
confirms the importance of examining short-term events
in order to build a complete picture of hydropower-related
thermal alteration. Figure 6 indicates a characteristic
Seasonal variations in the thermopeaking effects

The Scale-Averaged Wavelet Power is a useful indicator to investigate in more detail how the effects of thermal alteration at a given time scale change during the year. The SAWP is indeed a measure of the signal variability at a given period of oscillation: it can be thought as

bimodal distribution of the hydropeaking event duration. One peak relates to sub-daily scales, and may range from 5 to 8 h, depending on how the presence of multiple events is accounted for when counting the events. The second peak corresponds to much longer releases, which mainly last from 15 to 17 h. The strong alteration at sub-daily scales emerging from Figure 11, in the case of the Mezzocorona junction, is therefore likely due to the short-lasting peaking events, while the average impact of longer lasting releases seems to produce a relatively weaker effect. This can be detected in Figure 11 for periods longer than 1 day, with maximum downstream alterations up to 1-5 times with respect to the upstream signal.

Overall, the application of WT analysis shows that the sub-daily time scales are those most affected by thermopeaking, thus confirming the need of high time-resolution datasets to completely characterize the thermal regime in river catchments where hydropower production occurs. Moreover, beyond yearly averaged differences that can be observed at different time scales, it is evident from the spectra in Figure 10 that the upstream/downstream comparison yields different results in different times of the year with potential severe ecological effects. These seasonal variations are examined in more detail in the next subsection.
a local standard deviation of the temperature series at the scale of interest, which varies with time. Figure 12 shows the SAWP computed at the daily scale for the Mezzocorona and for the Rabbies junctions. Values have been made dimensional through the standard deviation of each series. In the near-natural Rabbies junction (Figure 12a), upstream daily temperature oscillations are essentially unmodified by the lateral input of the Rabbies stream. In winter time, diel temperature oscillates of nearly 1°C, while the fluctuation range extends up to 7°C in the warmest months. Despite the streamflow of the Rabbies Creek is often comparable to that of the receiving Noce River, thermal differences between the two streams are not high enough for significant heat exchanges to occur. On the contrary, Figure 12b indicates that thermopeaking associated to the Mezzocorona power plant is able to substantially modify the daily thermal oscillations occurring upstream (blue line) of the release. The downstream (red line) daily thermal oscillations are indeed damped up to 3–4°C in April and May, a trend which persists in early summer months. In contrast, in November and December due to hydropoeaking, the Noce River can experience diel fluctuations of 4–5°C compared with an average of 1°C occurring in the section upstream of the release.

Differences ΔSAWP between downstream and upstream SAWPS can be used to examine alterations of the thermal oscillations at any time scale of interest. In addition to the daily scale of oscillation, it is interesting to focus also on the strongly altered sub-daily scales (see Figure 11) and on the weekly scale. Figure 13 quantifies downstream–upstream SAWP differences at the 8-h, daily and weekly scale in the form of box-and-whiskers plots. The quartiles and ranges have been computed on the values of ΔSAWP series for each month separately, in order to immediately highlight seasonal variations. Figure 13b is therefore a different representation of the same information contained in Figure 12b for the daily scale of oscillation: it shows that the monthly mean amplitude of thermal oscillations are reduced from February to September and are enhanced from November to January. Figure 13a and c shows different trends occurring at sub-daily and weekly scales. At the 8-h scale, short-term temperature oscillations can be increased by thermopeaking events up to 2–3°C from April to August and, albeit to a lower extent (1–1.5°C), also from October to January. This is likely associated with events corresponding to the first peak in Figure 6 and can be detected thanks to the relatively high sampling interval of the collected dataset, which is several times smaller than the averaged duration of the shortest events. The monthly mean SAWP alteration related to these short-term events is lower (up to 1°C) with respect to that occurring at the daily scale (cf. Figure 13a and b): this notwithstanding, the large number of outliers in Figure 13a suggests the repeated, irregular occurrence of stronger localized

![Figure 12. One-day SAWP for temperature series upstream (blue line) and downstream (red line) the Rabbies (a) and the Mezzocorona (b) junctions.](image-url)
alterations (2–3 °C) also at this scale, which may also have severe ecological consequences. This also indicates the importance of focusing on these sub-daily scales of oscillation to avoid the loss of possibly ecologically relevant information.

The behaviour of the difference ΔSAWP at the week scale parallels that at the 8-h period from April to July, whereas weekly oscillations follow a more irregular trend in fall months and are reduced by thermopeaking in winter times. Maximum alterations at the week scale, however, keep more confined with respect to other scales, being almost invariably lower than 1 °C.

The seasonality that can be observed in the comparison between upstream and downstream SAWPS at the daily scale parallels that associated with the succession of warm and cold thermopeaking events (Figure 9). It has been noted in Section on Thermopeaking Characterization that warm thermopeaking causes an additional heating with respect to what would occur naturally from approximately October to February. This results in downstream amplification of the thermal oscillations and therefore can be associated with the positive values of ΔSAWP appearing in Figure 13a and b during the winter months. In contrast, cold thermopeaking, occurring approximately from April to August (Figure 9), results in cooling down the river water that would be naturally heated by external exchanges. This reduces the thermal oscillations in the downstream section, thus implying negative values of ΔSAWP that can be observed in the same months at the daily scale (Figure 13b).

The analysis of upstream–downstream differences among the Scale Averaged Wavelet Power at sub-daily, daily and weekly scales therefore allows to quantify the seasonalities associated with thermopeaking effects at these scales. Upstream–downstream variations in the thermal fluctuations are stronger at the 8-h and at the daily scale, and result in opposite trends during summer months, while they are associated with increased thermal oscillations during winter months.

DISCUSSION AND CONCLUSIONS

The present study provides a detailed quantification of the short-term alteration of the thermal regime in the Noce River, a typical hydropower-regulated Alpine stream. Besides representing the first study related to the river thermal regime alteration in an Italian Alpine basin, it allows a better quantitative understanding of the complexity associated with water temperature regimes in regulated streams, particularly at the short time scales affected by hydropower production. The outcomes of the analysis indicate a series of previously unknown thermal effects at multiple scales which might strongly affect biological communities in similar geographical and regulation contexts. Indeed strong biological alterations have been documented (Bruno et al., 2009) in the same Noce River downstream of the Cogolo power station (see Figure 1), where strong hydropoeaking and thermopeaking occur. It is therefore reasonable to hypothesize that the river biota may also be severely affected by thermopeaking further downstream under analogous regulation effects.

In analogy with hydropoeaking, we propose the terminology thermopeaking to denote the sharp temperature variations associated with the sudden instream water releases downstream of the power plants. In order to quantify thermal alterations related to hydropoeaking, we have first devised a suitable event-detection method based on the time derivative of the data series in order to define which records, within the temperature series, belong to the events. This can be properly achieved referring to the

![Box-and-whiskers plot](https://example.com/plot.png)
water level series, where sharp temporal variations invariably occur all year-round, allowing to precisely detect beginning and end times. On the contrary, automated event detection on the temperature series would be much difficult, because temperature variations in time may not be always be sharp enough. This is related to the interplay between the heat fluxes associated with river–atmosphere exchanges and with hydropoeaking releases, which produces different effects on the temperature series, depending on the time of the release during the day, and varies across different seasons. In the Noce River, the rising and falling of hydro- and thermoeaking are comparable with the period of the sampling interval (nearly 30 min), and might have two typical durations, in the ranges between 5–8 and 15–18 h. The time distribution of thermoeaking reflects the pattern of hydropower production driven by price fluctuations in the energy market and thus often deviates from the fairly regular pattern consisting of energy production during daytime in the working days, which was typical in the Alps until the past decade.

Warm thermoeaking occurs from September to January and results in additional (up to 4 °C) heating with respect to that associated with the natural diel fluctuations. On the contrary, cold thermoeaking occurs from March to July and cools down the temperature (up to 6 °C), in contrast with the natural trend that would result in heating during the day. As a consequence, temperature temporal oscillations recorded downstream of the release are amplified in the average during winter compared with the summer season. Overall, the key differences between natural and man-made temperature variations that can be drawn from the present study appear to be much faster than the rate of temperature changes (see Figures 7 and 8) and the seasonal effects associated with repeated thermoeaks (Figure 12).

The application of Wavelet Analysis (WT) allows to identify how this succession of events affects the thermal river regime at various time scales, from those of a few hours to weekly thermal oscillations. Application of WT to study short-term temperature alterations due to dam regulation has been proposed by Steel and Lange (2007) on several daily temperature series in the Willamette River Basin (USA), regulated by a series of large, multipurpose dams. Although it can be expected that the difference in dam purposes might determine different type of thermal alterations, it is worth attempting a comparison between the outcomes of the two analysis. Steel and Lange (2007) found reductions in water temperature variability, defined as the variability of the wavelet coefficients, as a result of dam regulation at the 1-, 2-, 4- and 8-day scales. No significant differences have been detected in water temperature variability between managed and natural flows at the 16- and 32-day scale. The outcomes of our study confirms that the strongest variability applies for the smaller scales, with a strong increase in temperature variability at sub-daily scales, which could not be detected by Steel and Lange (2007). The present analysis shows that such time-averaged figures are also subject to marked seasonal variations at the sub-daily, daily and weekly scales, with potential relevant ecological effects. The quantification of thermoeaking events and of its thermal effects at multiple time scales suggests that hydropower regulation have significantly muted the small time scale variability in temperature patterns to which many organisms may have adapted. Conserving or restoring natural temperature patterns in rivers will require attention to these small-scale thermal alterations and to their potential ecological consequences. This reinforces the need, already raised by Brown and Hannah (2008), of better identifying dynamics and dominant factors/processes operating at different space and timescales, and to underpin accurate prediction of thermal impacts of climate and human-induced change. The complexity of temperature variability at small space scales has been documented in undisturbed rivers (Cardenas et al., 2008; Acuna and Tockner, 2009). To the best of our knowledge, yet, no research has examined the ecological effects of the frequent and intermittent changes associated with thermoeaking that occur downstream of hydropower plants at short time scales (daily and sub-daily) on the riverine biota and bio-chemical processes. Experimental research needed to assess how thermoeaking is likely to influence phases such as larval growth rates, adult emergence or behavioural drift, therefore appears of specific relevance in spite of many studies that highlighted the importance of river thermal regimes as drivers of ecological processes and of aquatic communities dynamics at much longer scales (Ward and Stanford, 1979).

ACKNOWLEDGEMENTS

This work has received financial support from the REPORT project, funded by the Adige River Basin Authority and from the INTERREG-IVB ALPINE SPACE ‘ALP-WATER-SCARCE’ project. The contribution of Mauro Caroli and Martino Salvaro in data collection is gratefully acknowledged.

REFERENCES

Copyright © 2010 John Wiley & Sons, Ltd.

Ecol Hydrol. 2, 0–0 (2010)

DOI: 10.1002/eco