Home

Existing databases

Definitions

How to measure

Available data

Contacts

Available data

 

 

Here we have collected some data from recent papers and books.

The notation is exactly as in the single papers and has not been homogenized (for the moment).

 

  • Lanzoni, S., and G. Seminara (1998), On tide propagation in convergent estuaries, J. Geophys. Res., 103, 30793-30812.

Table 1. Observed tidal and geometric properties of various tidal estuaries.

Estuary a0 T0 Le Lb D0 U0 C0 source

units

[m] [hours] [km] [m] [m] [m/s] [-]  
Bristol Channel 2.60 12.4 80 65 45.0 1.0 20.0 1
Columbia 1.00 12.4 240 25 10.0 1.0 18.0 2
Conwy 2.40 12.5 22 6.3 3.0 0.5 14.0 3
Delaware 0.64 12.5 215 40 5.8 0.6 21.8 4
Elbe 2.00 12.4 77 42 10.0 1.0 20.0 5
Fleet 0.60 12.5 12.5   1.5 0.4 22.4 6
Fraser (a) 1.50 12.4 108 215 9.0 1.0 14.4 7
Outer Bay of Fundy 2.10 12.4 190 230 60.0 1.0 21.0 8
Gironde 2.30 12.4 77 44 10.0 1.0 18.0 9
Hoogly 2.10 12.0 72 25.5 5.9     10
Hudson 0.69 12.4 245 140 9.2 0.7 30.9 11
Irrawaddy 1.00 12.0 124 35 12.4     10
Khor (b) 1.30 12.0 90 20.6 6.7     10
Ord 2.50 12.0 65 15.2 4.0 2.0 20.0 10
Potomac 0.65 12.4 187 54 6.0 0.9 24.0 11
Rotterdam Waterway 1.00 12.4 37 56 11.5 0.7 21.0 12
Scheldt 1.90 12.4 77 54 8.0 0.5 16.5 13
Severn 3.00 12.4 110 41 15.0 1.5 20.0 1
Soirap 1.30 12.0 95 34 7.9     10
St. Lawrence (a) 2.50 12.4 330 183 7.0 1.0 28.8 14
Tamar 2.60 12.5 21 4.6 2.9 0.5 25.0 4
Tees 1.50 12.0 14 5.5 7.5 0.4 16.0 15
Thames 2.00 12.3 95 25 8.5 0.6 14.1 4

Sources: 1, Uncles [1981], [1991]; 2, Giese and Jay [1989]; 3, Wallis and Knight [1984], Knight [1981]; 4, Frzedrichs and Aubrey [1994]; 5, Duwe and Sundermann [1986]; 6, Robinson et al. [1983], Shetye and Gouveia [1992]; 7, Ages and Woollard [1976], Le Blond [1978]; 8, Greenberg [1979]; 9, Allen et al. [1980]; 10, Wright et al. [1973]; 11, Thatcher and Harleman [1972]; 12, Abraham et al. [1986]; 13, de Jong and Gerritsen [1984]; 14, Prandle and Crookshank [1974], Le Blond [1978]; 15, Lewis and Lewis [1987].
(a) Fluvia1ly influenced estuaries.
(b) Extreme annual variability of the freshwater discharge.

 

 

  • Savenije, H.H.G. (2001), A simple analytical expression to describe tidal damping or amplification, Journal of Hydrology, 243, 205-215.

Table 1. Characteristics of estuaries analysed.

Estuary H0 b h u c C sin(e) f x g a b b/a

units

[m] [km] [m] [m/s] [m/s] [m^0.5 s^-1] [-] [m/s^2] [-] [km] [km]
Schelde 4.9 28 10 1.1 10 70 0.5 10.6 0.22 42 187
Gambia 1.2 56 8.7 0.9 6 60 0.4 10.0 0.37 -550 -1494
Pungue 6 20 4.3 0.9 4 40 0.4 19.5 0.05 -5 -102
Lalang 3 217 10.6 0.9 7 60 0.3 10.2 0.13 -175 -1391
Chao Phya 1.8 109 8 0.9 7 50 0.4 10.1 0.28 -59 -212
Tha Chin 2.7 87 5.3 0.9 3 45 0.4 10.7 0.08 -9 -116
Limpopo 1.1 50 7 0.8 5 60 0.3 10.1 0.22 1199 5495
Incomati 1 42 3 0.9 4 60 0.4 10.3 0.29 -16 -56
Maputo 2.8 16 3.6 0.9 5 60 0.4 11.8 0.13 3000 25,000

 

 

  • Toffolon, M., G. Vignoli, and M. Tubino (2006), Relevant parameters and finite amplitude effects in estuarine hydrodynamics, J. Geophys. Res., 111, C10014, doi:10.1029/2005JC003104.

Table 1. Values of the tidal amplitude a0, depth D0, convergence length Lb, Chézy coefficient C0, and characteristic measured velocity U0 for some estuaries and the corresponding values of the dimensionless parameters e, c, and g.

Estuary a0 D0 Lb Ch U0 e c g

units

[m] [m] [km] [-] [m/s] [-] [-] [-]
Bristol Channel (b) 2.6 45 6.3 14.0 1 0.06 0.48 2.3
Columbia (b) 1 10 15.2 20.0 1 0.1 2.17 2.81
Conwy (b) 2.4 3 20.6 20.0 0.5 0.8 52.9 6.17
Delaware (b) 0.64 5.8 54 24.0 0.6 0.11 2.16 1.35
Elbe (b) 2 10 56 19.2 1 0.2 3.52 1.68
Fraser (b) 1.5 9 4.6 25.0 1 0.17 5.96 0.31
Gironde (b) 2.3 10 87 14.4 1 0.23 5 1.6
Hudson (b) 0.69 9.2 42 20.0 0.7 0.08 0.58 0.48
Ord (b) 2.5 4 35 20.0 (c) 1.1 0.63 16.8 2.83
Outer Bay of Fundy (b) 2.1 60 65 20.0 1 0.04 0.23 0.75
Potomac (b) 0.65 6 230 21.0 0.9 0.11 1.71 1.01
Rotterdam Waterway (b) 1 11.5 140 30.9 0.7 0.09 1.29 1.35
Western Scheldt (b) 1.9 12 (d) 41 (d) 20.0 (d) 1 (d) 0.16 2.15 1.28
Severn (b) 3 15 20 12.8 1.5 0.2 2.87 2.1
St. Lawrence (b) 2.5 70 (e) 25 18.0 1 0.04 0.11 1.02
Tamar (b) 2.6 2.9 25.5 20.0 0.5 0.9 18.9 8.3
Tees (b) 1.5 7.5 217 19.2 0.4 0.2 6.14 10.7
Thames (b) 2 8.5 42 19.2 0.6 0.24 8.96 2.57
Gambia (f) 0.6 8.7 40 21.8 - 0.07 1.42 1.17
Pungue (f) 3 4.3 34 20.0 - 0.7 45.9 2.31
Lalang (f) 1.5 10.6 60 21.8 - 0.14 2.63 0.33
Tha Chin (f) 1.35 5.3 50 19.2 - 0.25 11.9 0.59
Incomati (f) 0.5 3 5.5 16.0 - 0.17 5.83 0.92
Limpopo (f) 0.55 7 215 14.4 - 0.08 1.8 1.18
Maputo (f) 1.4 3.6 109 16.0 - 0.39 12.4 2.64
Chao Phya (f) 0.9 8 56 21.0 - 0.11 3.47 0.58

(b) Data are taken from Lanzoni and Seminara [1998].
(c) The value has been modified according to Wolanski et al. [2003].
(d) The values have been modified according to Toffolon [2002].
(e) The value (7 m) of the reference depth reported by Lanzoni and Seminara [1998] seems unrealistic: our estimate is based on the original paper [Prandle and Crookshank, 1974].
(f) Data are taken from Savenije [2001].

 

 

  • Savenije, H.H.G. (2005), Salinity and Tides in Alluvial Estuaries, Elsevier, 208 p.

Table 2.2. Characteristic values of alluvial estuaries.

Estuary A0 A0' B0 h a b C H c0 dH 1/b R'/c l LT

units

[m^2] [m^2] [m] [m] [km] [km] [m/s^(1/2)] [m] [m/s] [10^(-6) m^(-1)] [10^(-6) m^(-1)] [10^(-6) m^(-1)] [km] [km]
Mae Klong 1400   250 5.2 102 155 53 2.0 7.1 -4.2 6.5 33.0 317 120
Limpopo 1710 1340 222 7.0 50 18 55 1.1 8.3 0.0 20.0 18.5 368 150
Lalang 2550   371 10.6 217 96 59 2.7 10.2 -1.0 4.6 8.7 453 200
Tha Chin 3000 1380 3600 5.3 87 87 45 2.6 3.0 -9.4 11.5 108.1 133 120
Sinnamary 3500 1210 2100 3.8 39 13 50 2.9 6.1 -5.0 25.6 66.0 271  
Chao Phya 4300   600 7.2 109 109 50 2.5 7.0 -3.6 9.2 26.8 311 120
Ord 7900   3200 4.0 22.1 15.2 50 5.9 6.3 0.0 45.2 33.7 278 65
Incomati 8100 1750 4500 2.9 42 42 60 1.4 3.6 -13.0 23.8 92.4 160 100
Pungué 28,000   6512 3.8 21 21 50 6.7 6.1 -8.5 47.6 253.2 271 120
Maputo 40,000 6460 9000 3.6 16 16 60 3.4 5.9 1.0 62.5 54.7 264 100
Thames 58,500   7480 7.1 23 23 55 4.3 8.3 2.3 43.5 19.7 371 110
Corantijn 69,000 34,600 30,000 6.5 64 48 55 2.3 8.0 -1.7 15.6 21.8 355 120
Gambia 84,400 27,200 9687 8.7 121 121 57 1.2 9.2 -1.0 8.3 12.4 410 500
Schelde 150,000   15,207 10.0 26 28 56 3.7 13.0 3.8 38.5 8.3 577 200
Delaware 255,000   37,655 6.6 41 42 55 1.5 8.0 1.7 24.4 20.8 357 200

 

Table 5.4. Parameters used for the equation to predict Van den Burgh’s coefficient.

Estuary K T H0 E0 f C^2 a b A0' h d

units

[-] [s] [m] [km] [-] [m/s] [km] [km] [10^3 m^2] [m] [10^(-6) m^(-1)]
Mae Klong 0.3 44,400 2 14 0.028 2809 102 155 1.4 5.2 -4.2
Lalang 0.65 86,400 3 31 0.023 3481 217 96 2.55 10.6 -1.0
Limpopo 0.5 44,440 1.1 8 0.026 3025 130 50 1.34 7.0 1.7
Tha Chin 0.35 86,400 2 15 0.039 2025 87 87 1.38 5.3 9.4
Chao Phya 0.75 86,400 2.4 26 0.031 2500 109 109 4.3 7.2 -3.6
Incomati 0.15 44,440 1.4 7 0.022 3600 42 42 1.75 2.9 -13.0
Pungué 0.3 44,440 6.3 20 0.031 2500 21 21 26.4 3.5 -8.5
Maputo 0.38 44,440 2.8 13 0.022 3600 16 16 6.46 3.6 1.0
Thames 0.2 44,440 4.3 14 0.026 3025 23 23 58.5 7.1 2.3
Corantijn 0.21 44,440 2 11 0.026 3025 64 48 34.6 6.5 -1.7
Sinnamary 0.45 44,440 2.6 10 0.031 2500 39 39 1.21 3.8 -1.0
Gambia 0.6 44,440 1.2 10 0.031 2500 121 121 27.2 8.7 -1.0
Delaware 122 44,440 1.7 8 0.026 3025 41 42 255 6.6 1.7
Schelde 0.25 44,440 4 12 0.026 3025 28 28 150 10.5 3.8

 

Table 5.3. Measured salinity distributions and calibrated values of K and a0 for different estuaries.

 

Table 5.5. Measured and predicted salt intrusion length in different estuaries.

Note: with km2 for the cross-sectional areas, it is intended 1'000 m2 and not 1'000'000 m2.

 


Last update: 08/01/2009